32 #include "star_rot_diff.h" 34 #include "graphique.h" 35 #include "utilitaires.h" 43 int nzadapt,
const Tbl& ent_limit,
45 const Tbl& control,
double mbar_wanted,
46 double aexp_mass,
Tbl& diff,
Param*){
54 char display_bold[]=
"x[1m" ; display_bold[0] = 27 ;
55 char display_normal[] =
"x[0m" ; display_normal[0] = 27 ;
71 int i_b = mg->
get_nr(l_b) - 1 ;
72 int j_b = mg->
get_nt(l_b) - 1 ;
76 double ent_b = ent_limit(
nzet-1) ;
81 int mer_max = icontrol(0) ;
82 int mer_rot = icontrol(1) ;
83 int mer_change_omega = icontrol(2) ;
84 int mer_fix_omega = icontrol(3) ;
85 int mer_mass = icontrol(4) ;
86 int mermax_poisson = icontrol(5) ;
87 int mer_triax = icontrol(6) ;
88 int delta_mer_kep = icontrol(7) ;
89 int mer_diff = icontrol(8) ;
92 if (mer_change_omega < mer_rot) {
93 cout <<
"Star_rot_diff::equilibrium: mer_change_omega < mer_rot !" << endl ;
94 cout <<
" mer_change_omega = " << mer_change_omega << endl ;
95 cout <<
" mer_rot = " << mer_rot << endl ;
98 if (mer_fix_omega < mer_change_omega) {
99 cout <<
"Star_rot_diff::equilibrium: mer_fix_omega < mer_change_omega !" 101 cout <<
" mer_fix_omega = " << mer_fix_omega << endl ;
102 cout <<
" mer_change_omega = " << mer_change_omega << endl ;
108 bool change_ent = true ;
111 mer_mass =
abs(mer_mass) ;
114 double precis = control(0) ;
115 double omega_ini = control(1) ;
116 double relax = control(2) ;
117 double relax_prev = double(1) - relax ;
118 double relax_poisson = control(3) ;
119 double thres_adapt = control(4) ;
120 double ampli_triax = control(5) ;
121 double precis_adapt = control(6) ;
128 double& diff_ent = diff.
set(0) ;
129 double& diff_nuf = diff.
set(1) ;
130 double& diff_nuq = diff.
set(2) ;
133 double& diff_shift_x = diff.
set(5) ;
134 double& diff_shift_y = diff.
set(6) ;
135 double& vit_triax = diff.
set(7) ;
146 int nz_search =
nzet + 1 ;
149 double reg_map = 1. ;
151 par_adapt.
add_int(nitermax, 0) ;
153 par_adapt.
add_int(nzadapt, 1) ;
156 par_adapt.
add_int(nz_search, 2) ;
158 par_adapt.
add_int(adapt_flag, 3) ;
177 par_adapt.
add_tbl(ent_limit, 0) ;
183 double precis_poisson = 1.e-16 ;
189 for (
int i=1; i<=3; i++) {
195 for (
int i=1; i<=3; i++) {
196 cshift.set(i-1) = -
beta(i) ;
201 for (
int i=1; i<=3; i++) {
202 cw_shift.set(i-1) =
w_shift(i) ;
209 Param par_poisson_nuf ;
210 par_poisson_nuf.
add_int(mermax_poisson, 0) ;
211 par_poisson_nuf.
add_double(relax_poisson, 0) ;
212 par_poisson_nuf.
add_double(precis_poisson, 1) ;
216 Param par_poisson_nuq ;
217 par_poisson_nuq.
add_int(mermax_poisson, 0) ;
218 par_poisson_nuq.
add_double(relax_poisson, 0) ;
219 par_poisson_nuq.
add_double(precis_poisson, 1) ;
223 Param par_poisson_tggg ;
224 par_poisson_tggg.
add_int(mermax_poisson, 0) ;
225 par_poisson_tggg.
add_double(relax_poisson, 0) ;
226 par_poisson_tggg.
add_double(precis_poisson, 1) ;
232 Param par_poisson_dzeta ;
239 Param par_poisson_vect ;
241 par_poisson_vect.
add_int(mermax_poisson, 0) ;
242 par_poisson_vect.
add_double(relax_poisson, 0) ;
243 par_poisson_vect.
add_double(precis_poisson, 1) ;
255 double accrois_omega = (omega_c0 - omega_ini) /
256 double(mer_fix_omega - mer_change_omega) ;
308 ofstream fichconv(
"convergence.d") ;
309 fichconv <<
"# diff_ent GRV2 max_triax vit_triax" << endl ;
311 ofstream fichfreq(
"frequency.d") ;
312 fichfreq <<
"# f [Hz]" << endl ;
314 ofstream fichevol(
"evolution.d") ;
316 "# |dH/dr_eq/dH/dr_pole| r_pole/r_eq ent_c" 320 double err_grv2 = 1 ;
321 double max_triax_prev = 0 ;
327 for(
int mer=0 ; (diff_ent > precis) && (mer<mer_max) ; mer++ ) {
329 cout <<
"-----------------------------------------------" << endl ;
330 cout <<
"step: " << mer << endl ;
331 cout <<
"diff_ent = " << display_bold << diff_ent << display_normal
333 cout <<
"err_grv2 = " << err_grv2 << endl ;
339 if (mer >= mer_rot) {
341 if (mer < mer_change_omega) {
342 omega_c = omega_ini ;
345 if (mer <= mer_fix_omega) {
346 omega_c = omega_ini + accrois_omega *
347 (mer - mer_change_omega) ;
368 source_nuq =
ak_car - d_logn(1)*(d_logn(1)+d_bet(1))
369 - d_logn(2)*(d_logn(2)+d_bet(2))
370 - d_logn(3)*(d_logn(3)+d_bet(3)) ;
373 source_nuf = qpig *
nbar ;
386 - d_logn(1)*d_logn(1) - d_logn(2)*d_logn(2) - d_logn(3)*d_logn(3) ;
420 cout <<
"Test of the Poisson equation for nuf :" << endl ;
422 diff_nuf = err(0, 0) ;
428 if (mer == mer_triax) {
430 if ( mg->
get_np(0) == 1 ) {
432 "Star_rot_diff::equilibrium: np must be stricly greater than 1" 433 << endl <<
" to set a triaxial perturbation !" << endl ;
440 perturb = 1 + ampli_triax * sint*sint *
cos(2*phi) ;
454 double max_triax = 0 ;
456 if ( mg->
get_np(0) > 1 ) {
458 for (
int l=0; l<nz; l++) {
459 for (
int j=0; j<mg->
get_nt(l); j++) {
460 for (
int i=0; i<mg->
get_nr(l); i++) {
463 double xcos2p = (*(va_nuf.
c_cf))(l, 2, j, i) ;
466 double xsin2p = (*(va_nuf.
c_cf))(l, 3, j, i) ;
468 double xx =
sqrt( xcos2p*xcos2p + xsin2p*xsin2p ) ;
470 max_triax = ( xx > max_triax ) ? xx : max_triax ;
477 cout <<
"Triaxial part of nuf : " << max_triax << endl ;
487 cout <<
"Test of the Poisson equation for nuq :" << endl ;
489 diff_nuq = err(0, 0) ;
495 for (
int i=1; i<=3; i++) {
496 if(source_shift(i).get_etat() != ETATZERO) {
497 if(source_shift(i).dz_nonzero()) {
498 assert( source_shift(i).get_dzpuis() == 4 ) ;
501 (source_shift.set(i)).set_dzpuis(4) ;
506 double lambda_shift = double(1) / double(3) ;
508 if ( mg->
get_np(0) == 1 ) {
514 if ( (source_shift(1).get_etat() == ETATZERO) &&
515 (source_shift(2).get_etat() == ETATZERO) &&
516 (source_shift(3).get_etat() == ETATZERO) ) {
517 csource_shift.set_etat_zero() ;
520 csource_shift.set_etat_qcq() ;
521 for (
int i=1; i<=3; i++) {
522 csource_shift.set(i-1) = source_shift(i) ;
524 csource_shift.set(2).set_etat_zero() ;
527 csource_shift.poisson_vect(lambda_shift, par_poisson_vect,
528 cshift, cw_shift, ckhi_shift) ;
531 for (
int i=1; i<=3; i++) {
537 cout <<
"Test of the Poisson equation for shift_x :" << endl ;
538 err = source_shift(1).test_poisson(-
beta(1), cout,
true) ;
539 diff_shift_x = err(0, 0) ;
541 cout <<
"Test of the Poisson equation for shift_y :" << endl ;
542 err = source_shift(2).test_poisson(-
beta(2), cout,
true) ;
543 diff_shift_y = err(0, 0) ;
557 if (mer > mer_fix_omega + delta_mer_kep) {
559 omega_c *= fact_omega ;
563 bool omega_trop_grand = false ;
570 bool superlum = true ;
577 if (mer < mer_diff) {
580 else if (omega_c == 0.) {
589 brst2 = brst2*brst2 ;
593 double F_e = brst2.val_grid_point(l_b, k_b, j_b, i_b) * omnp /
595 brst2.val_grid_point(l_b, k_b, j_b, i_b) * omnp * omnp ) ;
597 if (F_e ==
double(0) || mer == mer_diff) {}
601 double om_lkji, F_max ;
602 for (l=0; l<
nzet+1; l++) {
603 for (k=0; k<mg->
get_np(l); k++) {
604 for (j=0; j<mg->
get_nt(l); j++) {
605 for (i=0; i<mg->
get_nr(l); i++) {
607 if (om_lkji > om_max) {
610 F_max = brst2.val_grid_point(l, k, j, i) * omnp /
612 brst2.val_grid_point(l, k, j, i) * omnp * omnp ) ;
625 / ((lambda1-1)*
pow(F_e, p) - (lambda2-1)*
pow(F_max, p)), 1./(p+q) ) ;
627 / (lambda2*(lambda1-1)*
pow(F_e, p+q) - lambda1*(lambda2-1)*
pow(F_max, p+q)), 1./p) ;
629 cout << F_e <<
" " << F_max <<
" " <<
par_frot(3) <<
" " <<
par_frot(4) << endl ;
657 double omeg_min = 0 ;
658 double omeg_max =
par_frot(1) * omega_c ;
659 double precis1 = 1.e-14 ;
660 int nitermax1 = 100 ;
675 double omeg_min = 0 ;
676 double omeg_max = omega_c ;
677 double precis1 = 1.e-14 ;
678 int nitermax1 = 100 ;
702 for (
int l=0; l<
nzet; l++) {
703 for (
int i=0; i<mg->
get_nr(l); i++) {
708 cout <<
"U > c for l, i : " << l <<
" " << i
709 <<
" U = " << u1 << endl ;
714 cout <<
"**** VELOCITY OF LIGHT REACHED ****" << endl ;
715 omega_c /= fact_omega ;
716 cout <<
"New central rotation frequency : " 717 <<
omega/(2.*M_PI) * f_unit <<
" Hz" << endl ;
718 omega_trop_grand = true ;
739 mlngamma = - 0.5 *
uuu*
uuu ;
745 double mlngamma_b = mlngamma.val_grid_point(l_b, k_b, j_b, i_b) ;
752 double mlngamma_c = 0 ;
757 double alpha_r2 = ( ent_c - ent_b + mlngamma_c - mlngamma_b
758 + nuq_c - nuq_b + primf_c - primf_b)
759 / ( nuf_b - nuf_c ) ;
760 alpha_r =
sqrt(alpha_r2) ;
761 cout <<
"alpha_r = " << alpha_r << endl ;
779 for (
int l=0; l<
nzet; l++) {
780 int imax = mg->
get_nr(l) - 1 ;
781 if (l == l_b) imax-- ;
782 for (
int i=0; i<imax; i++) {
785 cout <<
"ent < 0 for l, i : " << l <<
" " << i
792 cout <<
"**** KEPLERIAN VELOCITY REACHED ****" << endl ;
793 omega_c /= fact_omega ;
794 cout <<
"New central rotation frequency : " 795 << omega_c/(2.*M_PI) * f_unit <<
" Hz" << endl ;
796 omega_trop_grand = true ;
801 if ( omega_trop_grand ) {
803 fact_omega =
sqrt( fact_omega ) ;
804 cout <<
"**** New fact_omega : " << fact_omega << endl ;
816 double rap_dent = fabs( dent_eq / dent_pole ) ;
817 cout <<
"| dH/dr_eq / dH/dr_pole | = " << rap_dent << endl ;
819 if ( rap_dent < thres_adapt ) {
821 cout <<
"******* FROZEN MAPPING *********" << endl ;
867 Cmp csource_tggg(source_tggg) ;
878 Cmp csource_dzf(source_dzf) ;
879 Cmp csource_dzq(source_dzq) ;
881 mp.
poisson2d(csource_dzf, csource_dzq, par_poisson_dzeta,
885 err_grv2 = lbda_grv2 - 1;
886 cout <<
"GRV2: " << err_grv2 << endl ;
901 logn = relax *
logn + relax_prev * logn_prev ;
903 dzeta = relax *
dzeta + relax_prev * dzeta_prev ;
915 fichfreq <<
" " << omega_c / (2*M_PI) * f_unit ;
916 fichevol <<
" " << rap_dent ;
918 fichevol <<
" " << ent_c ;
924 if (mer > mer_mass) {
927 if (mbar_wanted > 0.) {
928 xx =
mass_b() / mbar_wanted - 1. ;
929 cout <<
"Discrep. baryon mass <-> wanted bar. mass : " << xx
933 xx =
mass_g() / fabs(mbar_wanted) - 1. ;
934 cout <<
"Discrep. grav. mass <-> wanted grav. mass : " << xx
937 double xprog = ( mer > 2*mer_mass) ? 1. :
938 double(mer-mer_mass)/double(mer_mass) ;
940 double ax = .5 * ( 2. + xx ) / (1. + xx ) ;
941 double fact =
pow(ax, aexp_mass) ;
942 cout <<
" xprog, xx, ax, fact : " << xprog <<
" " <<
943 xx <<
" " << ax <<
" " << fact << endl ;
949 if (mer%4 == 0) omega_c *= fact ;
959 diff_ent = diff_ent_tbl(0) ;
960 for (
int l=1; l<
nzet; l++) {
961 diff_ent += diff_ent_tbl(l) ;
965 fichconv <<
" " <<
log10( fabs(diff_ent) + 1.e-16 ) ;
966 fichconv <<
" " <<
log10( fabs(err_grv2) + 1.e-16 ) ;
967 fichconv <<
" " <<
log10( fabs(max_triax) + 1.e-16 ) ;
970 if ( (mer > mer_triax+1) && (max_triax_prev > 1e-13) ) {
971 vit_triax = (max_triax - max_triax_prev) / max_triax_prev ;
974 fichconv <<
" " << vit_triax ;
983 max_triax_prev = max_triax ;
1000 for (
int i=1; i<=3; i++) {
virtual double mass_g() const
Gravitational mass.
void annule_domain(int l)
Sets the Tensor to zero in a given domain.
Cmp log(const Cmp &)
Neperian logarithm.
Mtbl_cf * c_cf
Coefficients of the spectral expansion of the function.
void add_tenseur_mod(Tenseur &ti, int position=0)
Adds the address of a new modifiable Tenseur to the list.
Vector ssjm1_wshift
Effective source at the previous step for the resolution of the vector Poisson equation for ...
Scalar dzeta
Metric potential .
Component of a tensorial field *** DEPRECATED : use class Scalar instead ***.
Scalar a_car
Square of the metric factor A.
Radial mapping of rather general form.
void add_int(const int &n, int position=0)
Adds the address of a new int to the list.
Map & mp
Mapping associated with the star.
Scalar nuf
Part of the Metric potential = logn generated by the matter terms.
const Cmp & cmp_zero() const
Returns the null Cmp defined on *this.
int get_np(int l) const
Returns the number of points in the azimuthal direction ( ) in domain no. l.
void coef() const
Computes the coeffcients of *this.
Cmp sqrt(const Cmp &)
Square root.
Tbl par_frot
Parameters of the function .
Scalar khi_shift
Scalar used in the decomposition of shift , following Shibata's prescription [Prog.
bool relativistic
Indicator of relativity: true for a relativistic star, false for a Newtonian one. ...
Scalar bbb
Metric factor B.
Standard units of space, time and mass.
Tensor up(int ind, const Metric &gam) const
Computes a new tensor by raising an index of *this.
const Mg3d * get_mg() const
Gives the Mg3d on which the mapping is defined.
double & set(int i)
Read/write of a particular element (index i) (1D case)
Tensor field of valence 0 (or component of a tensorial field).
Scalar poisson() const
Solves the scalar Poisson equation with *this as a source.
virtual double grv2() const
Error on the virial identity GRV2.
virtual void adapt(const Cmp &ent, const Param &par, int nbr=0)=0
Adaptation of the mapping to a given scalar field.
int get_type_t() const
Returns the type of sampling in the direction: SYM : : symmetry with respect to the equatorial pl...
Basic integer array class.
virtual void std_spectral_base()
Sets the spectral bases of the Valeur va to the standard ones for a scalar field. ...
void update_metric()
Computes metric coefficients from known potentials.
Values and coefficients of a (real-value) function.
Scalar nuq
Part of the Metric potential = logn generated by the quadratic terms.
double omega
Rotation angular velocity ([f_unit] )
Scalar nbar
Baryon density in the fluid frame.
virtual void change_triad(const Base_vect &)
Sets a new vectorial basis (triad) of decomposition and modifies the components accordingly.
int get_etat() const
Returns the logical state ETATNONDEF (undefined), ETATZERO (null) or ETATQCQ (ordinary).
Scalar s_euler
Trace of the stress scalar in the Eulerian frame.
virtual void set_etat_qcq()
Sets the logical state to ETATQCQ (ordinary state).
Tbl test_poisson(const Scalar &uu, ostream &ostr, bool detail=false) const
Checks if a Poisson equation with *this as a source has been correctly solved.
const Vector & derive_con(const Metric &gam) const
Returns the "contravariant" derivative of *this with respect to some metric , by raising the index of...
Tensor field of valence 1.
Cmp cos(const Cmp &)
Cosine.
const Metric_flat & flat_met_cart() const
Returns the flat metric associated with the Cartesian coordinates and with components expressed in th...
Tbl diffrel(const Cmp &a, const Cmp &b)
Relative difference between two Cmp (norme version).
virtual void hydro_euler()
Computes the hydrodynamical quantities relative to the Eulerian observer from those in the fluid fram...
Scalar ssjm1_tggg
Effective source at the previous step for the resolution of the Poisson equation for tggg ...
void add_double_mod(double &x, int position=0)
Adds the address of a new modifiable double to the list.
double val_grid_point(int l, int k, int j, int i) const
Returns the value of the field at a specified grid point.
Coord phi
coordinate centered on the grid
void set_etat_qcq()
Sets the logical state to ETATQCQ (ordinary state).
int nzet
Number of domains of *mp occupied by the star.
Scalar nphi
Metric coefficient .
virtual void equilibrium(double ent_c, double omega0, double fact_omega, int nzadapt, const Tbl &ent_limit, const Itbl &icontrol, const Tbl &control, double mbar_wanted, double aexp_mass, Tbl &diff, Param *=0x0)
Computes an equilibrium configuration.
Scalar gam_euler
Lorentz factor between the fluid and Eulerian observers.
Cmp & set()
Read/write for a scalar (see also operator=(const Cmp&) ).
virtual void poisson2d(const Cmp &source_mat, const Cmp &source_quad, Param &par, Cmp &uu) const =0
Computes the solution of a 2-D Poisson equation.
Scalar press
Fluid pressure.
virtual double mass_b() const
Baryon mass.
Scalar ssjm1_nuq
Effective source at the previous step for the resolution of the Poisson equation for nuq by means of ...
void add_tbl(const Tbl &ti, int position=0)
Adds the address of a new Tbl to the list.
int get_nzone() const
Returns the number of domains.
virtual void homothetie(double lambda)
Sets a new radial scale.
Vector u_euler
Fluid 3-velocity with respect to the Eulerian observer.
Sym_tensor tkij
Tensor related to the extrinsic curvature tensor by .
void mult_rsint()
Multiplication by everywhere; dzpuis is not changed.
Cmp pow(const Cmp &, int)
Power .
Tenseur contract(const Tenseur &, int id1, int id2)
Self contraction of two indices of a Tenseur .
Scalar logn
Logarithm of the lapse N .
Active physical coordinates and mapping derivatives.
double ray_pole() const
Coordinate radius at [r_unit].
int get_nr(int l) const
Returns the number of points in the radial direction ( ) in domain no. l.
virtual void partial_display(ostream &) const
Printing of some informations, excluding all global quantities.
void add_scalar_mod(Scalar &ti, int position=0)
Adds the address of a new modifiable Scalar to the list.
const Base_vect_cart & get_bvect_cart() const
Returns the Cartesian basis associated with the coordinates (x,y,z) of the mapping, i.e.
Scalar nn
Lapse function N .
Cmp log10(const Cmp &)
Basis 10 logarithm.
Cmp abs(const Cmp &)
Absolute value.
Scalar ssjm1_khi
Effective source at the previous step for the resolution of the Poisson equation for the scalar by m...
int get_taille() const
Gives the total size (ie dim.taille)
Scalar uuu
Norm of u_euler.
virtual void reevaluate(const Map *mp_prev, int nzet, Cmp &uu) const =0
Recomputes the values of a Cmp at the collocation points after a change in the mapping.
void add_double(const double &x, int position=0)
Adds the the address of a new double to the list.
double ray_eq() const
Coordinate radius at , [r_unit].
const Scalar & dsdr() const
Returns of *this .
Scalar ssjm1_nuf
Effective source at the previous step for the resolution of the Poisson equation for nuf by means of ...
int get_nt(int l) const
Returns the number of points in the co-latitude direction ( ) in domain no. l.
Valeur & set_spectral_va()
Returns va (read/write version)
Scalar & set(int)
Read/write access to a component.
void set_etat_qcq()
Sets the logical state to ETATQCQ (ordinary state).
void add_cmp_mod(Cmp &ti, int position=0)
Adds the address of a new modifiable Cmp to the list.
Scalar tggg
Metric potential .
void equation_of_state()
Computes the proper baryon and energy density, as well as pressure from the enthalpy.
void fait_nphi()
Computes tnphi and nphi from the Cartesian components of the shift, stored in shift ...
const Vector & derive_cov(const Metric &gam) const
Returns the gradient (1-form = covariant vector) of *this
Vector w_shift
Vector used in the decomposition of shift , following Shibata's prescription [Prog.
void fait_omega_field(double omeg_min, double omeg_max, double precis, int nitermax)
Computes (member omega_field ).
Scalar ener_euler
Total energy density in the Eulerian frame.
const Metric_flat & flat_met_spher() const
Returns the flat metric associated with the spherical coordinates and with components expressed in th...
Scalar omega_field
Field .
Tensor handling *** DEPRECATED : use class Tensor instead ***.
void add_int_mod(int &n, int position=0)
Adds the address of a new modifiable int to the list.
const Valeur & get_spectral_va() const
Returns va (read only version)