LORENE
strot_diff_equil.C
1 /*
2  * Function Star_rot_diff::equilibrium
3  *
4  * (see file star_rot_diff.h for documentation).
5  *
6  */
7 
8 /*
9  * Copyright (c) 2025 Santiago Jaraba
10  *
11  * This file is part of LORENE.
12  *
13  * LORENE is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2
15  * as published by the Free Software Foundation.
16  *
17  * LORENE is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with LORENE; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25  *
26  */
27 
28 // C headers
29 #include <cmath>
30 
31 // Lorene headers
32 #include "star_rot_diff.h"
33 #include "param.h"
34 #include "graphique.h"
35 #include "utilitaires.h"
36 #include "unites.h"
37 
38 #include "tenseur.h" // Unavoidable for now due to Poisson-solving functions
39 
40 
41 namespace Lorene{
42 void Star_rot_diff::equilibrium(double ent_c, double omega_c0, double fact_omega,
43  int nzadapt, const Tbl& ent_limit,
44  const Itbl& icontrol,
45  const Tbl& control, double mbar_wanted,
46  double aexp_mass, Tbl& diff, Param*){
47 
48  // Fundamental constants and units
49  // --------------------------------
50  using namespace Unites ;
51 
52  // For the display
53  // ---------------
54  char display_bold[]="x[1m" ; display_bold[0] = 27 ;
55  char display_normal[] = "x[0m" ; display_normal[0] = 27 ;
56 
57 
58  // Grid parameters
59  // ----------------
60 
61  const Mg3d* mg = mp.get_mg() ;
62  int nz = mg->get_nzone() ; // total number of domains
63  int nzm1 = nz - 1 ;
64 
65  // The following is required to initialize mp_prev as a Map_et:
66  Map_et& mp_et = dynamic_cast<Map_et&>(mp) ;
67 
68  // Index of the point at phi=0, theta=pi/2 at the surface of the star:
69  assert(mg->get_type_t() == SYM) ;
70  int l_b = nzet - 1 ;
71  int i_b = mg->get_nr(l_b) - 1 ;
72  int j_b = mg->get_nt(l_b) - 1 ;
73  int k_b = 0 ;
74 
75  // Value of the enthalpy defining the surface of the star
76  double ent_b = ent_limit(nzet-1) ;
77 
78  // Parameters to control the iteration
79  // -----------------------------------
80 
81  int mer_max = icontrol(0) ;
82  int mer_rot = icontrol(1) ;
83  int mer_change_omega = icontrol(2) ;
84  int mer_fix_omega = icontrol(3) ;
85  int mer_mass = icontrol(4) ;
86  int mermax_poisson = icontrol(5) ;
87  int mer_triax = icontrol(6) ;
88  int delta_mer_kep = icontrol(7) ;
89  int mer_diff = icontrol(8) ;
90 
91  // Protections:
92  if (mer_change_omega < mer_rot) {
93  cout << "Star_rot_diff::equilibrium: mer_change_omega < mer_rot !" << endl ;
94  cout << " mer_change_omega = " << mer_change_omega << endl ;
95  cout << " mer_rot = " << mer_rot << endl ;
96  abort() ;
97  }
98  if (mer_fix_omega < mer_change_omega) {
99  cout << "Star_rot_diff::equilibrium: mer_fix_omega < mer_change_omega !"
100  << endl ;
101  cout << " mer_fix_omega = " << mer_fix_omega << endl ;
102  cout << " mer_change_omega = " << mer_change_omega << endl ;
103  abort() ;
104  }
105 
106  // In order to converge to a given baryon mass, shall the central
107  // enthalpy be varied or Omega ?
108  bool change_ent = true ;
109  if (mer_mass < 0) {
110  change_ent = false ;
111  mer_mass = abs(mer_mass) ;
112  }
113 
114  double precis = control(0) ;
115  double omega_ini = control(1) ;
116  double relax = control(2) ;
117  double relax_prev = double(1) - relax ;
118  double relax_poisson = control(3) ;
119  double thres_adapt = control(4) ;
120  double ampli_triax = control(5) ;
121  double precis_adapt = control(6) ;
122 
123 
124  // Error indicators
125  // ----------------
126 
127  diff.set_etat_qcq() ;
128  double& diff_ent = diff.set(0) ;
129  double& diff_nuf = diff.set(1) ;
130  double& diff_nuq = diff.set(2) ;
131 // double& diff_dzeta = diff.set(3) ;
132 // double& diff_ggg = diff.set(4) ;
133  double& diff_shift_x = diff.set(5) ;
134  double& diff_shift_y = diff.set(6) ;
135  double& vit_triax = diff.set(7) ;
136 
137  // Parameters for the function Map_et::adapt
138  // -----------------------------------------
139 
140  Param par_adapt ;
141  int nitermax = 100 ;
142  int niter ;
143  int adapt_flag = 1 ; // 1 = performs the full computation,
144  // 0 = performs only the rescaling by
145  // the factor alpha_r
146  int nz_search = nzet + 1 ; // Number of domains for searching the enthalpy
147  // isosurfaces
148  double alpha_r ;
149  double reg_map = 1. ; // 1 = regular mapping, 0 = contracting mapping
150 
151  par_adapt.add_int(nitermax, 0) ; // maximum number of iterations to
152  // locate zeros by the secant method
153  par_adapt.add_int(nzadapt, 1) ; // number of domains where the adjustment
154  // to the isosurfaces of ent is to be
155  // performed
156  par_adapt.add_int(nz_search, 2) ; // number of domains to search for
157  // the enthalpy isosurface
158  par_adapt.add_int(adapt_flag, 3) ; // 1 = performs the full computation,
159  // 0 = performs only the rescaling by
160  // the factor alpha_r
161  par_adapt.add_int(j_b, 4) ; // theta index of the collocation point
162  // (theta_*, phi_*)
163  par_adapt.add_int(k_b, 5) ; // theta index of the collocation point
164  // (theta_*, phi_*)
165 
166  par_adapt.add_int_mod(niter, 0) ; // number of iterations actually used in
167  // the secant method
168 
169  par_adapt.add_double(precis_adapt, 0) ; // required absolute precision in
170  // the determination of zeros by
171  // the secant method
172  par_adapt.add_double(reg_map, 1) ; // 1. = regular mapping, 0 = contracting mapping
173 
174  par_adapt.add_double(alpha_r, 2) ; // factor by which all the radial
175  // distances will be multiplied
176 
177  par_adapt.add_tbl(ent_limit, 0) ; // array of values of the field ent
178  // to define the isosurfaces.
179 
180  // Parameters for the function Map_et::poisson for nuf
181  // ----------------------------------------------------
182 
183  double precis_poisson = 1.e-16 ;
184 
185  Cmp cssjm1_tggg(ssjm1_tggg) ;
186  Cmp cssjm1_khi(ssjm1_khi) ;
187  Tenseur cssjm1_wshift(mp, 1, CON, mp.get_bvect_cart() ) ;
188  cssjm1_wshift.set_etat_qcq() ;
189  for (int i=1; i<=3; i++) {
190  cssjm1_wshift.set(i-1) = ssjm1_wshift(i) ;
191  }
192 
193  Tenseur cshift(mp, 1, CON, mp.get_bvect_cart() ) ;
194  cshift.set_etat_qcq() ;
195  for (int i=1; i<=3; i++) {
196  cshift.set(i-1) = -beta(i) ;
197  }
198 
199  Tenseur cw_shift(mp, 1, CON, mp.get_bvect_cart() ) ;
200  cw_shift.set_etat_qcq() ;
201  for (int i=1; i<=3; i++) {
202  cw_shift.set(i-1) = w_shift(i) ;
203  }
204 
205  Tenseur ckhi_shift(mp) ;
206  ckhi_shift.set_etat_qcq() ;
207  ckhi_shift.set() = khi_shift ;
208 
209  Param par_poisson_nuf ;
210  par_poisson_nuf.add_int(mermax_poisson, 0) ; // maximum number of iterations
211  par_poisson_nuf.add_double(relax_poisson, 0) ; // relaxation parameter
212  par_poisson_nuf.add_double(precis_poisson, 1) ; // required precision
213  par_poisson_nuf.add_int_mod(niter, 0) ; // number of iterations actually used
214  par_poisson_nuf.add_scalar_mod( ssjm1_nuf ) ;
215 
216  Param par_poisson_nuq ;
217  par_poisson_nuq.add_int(mermax_poisson, 0) ; // maximum number of iterations
218  par_poisson_nuq.add_double(relax_poisson, 0) ; // relaxation parameter
219  par_poisson_nuq.add_double(precis_poisson, 1) ; // required precision
220  par_poisson_nuq.add_int_mod(niter, 0) ; // number of iterations actually used
221  par_poisson_nuq.add_scalar_mod( ssjm1_nuq ) ;
222 
223  Param par_poisson_tggg ;
224  par_poisson_tggg.add_int(mermax_poisson, 0) ; // maximum number of iterations
225  par_poisson_tggg.add_double(relax_poisson, 0) ; // relaxation parameter
226  par_poisson_tggg.add_double(precis_poisson, 1) ; // required precision
227  par_poisson_tggg.add_int_mod(niter, 0) ; // number of iterations actually used
228  par_poisson_tggg.add_cmp_mod( cssjm1_tggg ) ;
229  double lambda_tggg ;
230  par_poisson_tggg.add_double_mod( lambda_tggg ) ;
231 
232  Param par_poisson_dzeta ;
233  double lbda_grv2 ;
234  par_poisson_dzeta.add_double_mod( lbda_grv2 ) ;
235 
236  // Parameters for the function Scalar::poisson_vect
237  // -------------------------------------------------
238 
239  Param par_poisson_vect ;
240 
241  par_poisson_vect.add_int(mermax_poisson, 0) ; // maximum number of iterations
242  par_poisson_vect.add_double(relax_poisson, 0) ; // relaxation parameter
243  par_poisson_vect.add_double(precis_poisson, 1) ; // required precision
244  par_poisson_vect.add_cmp_mod( cssjm1_khi ) ;
245  par_poisson_vect.add_tenseur_mod( cssjm1_wshift ) ;
246  par_poisson_vect.add_int_mod(niter, 0) ;
247 
248 
249  // Initializations
250  // ---------------
251 
252  // Initial angular velocities
253  double omega_c = 0 ;
254 
255  double accrois_omega = (omega_c0 - omega_ini) /
256  double(mer_fix_omega - mer_change_omega) ;
257 
258 
259  update_metric() ; //update of the metric quantities
260 
261  equation_of_state() ; // update of the density, pressure,...etc
262 
263  hydro_euler() ; //update of the hydro quantities relative to the
264  // Eulerian observer
265 
266  // Quantities at the previous step :
267  Map_et mp_prev = mp_et ;
268  Scalar ent_prev = ent ;
269  Scalar logn_prev = logn ;
270  Scalar dzeta_prev = dzeta ;
271 
272  // Creation of uninitialized tensors:
273  Scalar source_nuf(mp) ; // source term in the equation for nuf
274  Scalar source_nuq(mp) ; // source term in the equation for nuq
275  Scalar source_dzf(mp) ; // matter source term in the eq. for dzeta
276  Scalar source_dzq(mp) ; // quadratic source term in the eq. for dzeta
277  Scalar source_tggg(mp) ; // source term in the eq. for tggg
278  Vector source_shift(mp, CON, mp.get_bvect_cart()) ; // source term for shift
279  Scalar mlngamma(mp) ; // centrifugal potential
280 
281  // Preparations for the Poisson equations:
282  // --------------------------------------
283  if (nuf.get_etat() == ETATZERO) {
284  nuf.set_etat_qcq() ;
285  nuf = 0 ;
286  }
287 
288  if (relativistic) {
289  if (nuq.get_etat() == ETATZERO) {
290  nuq.set_etat_qcq() ;
291  nuq = 0 ;
292  }
293 
294  if (tggg.get_etat() == ETATZERO) {
295  tggg.set_etat_qcq() ;
296  tggg = 0 ;
297  }
298 
299  if (dzeta.get_etat() == ETATZERO) {
300  dzeta.set_etat_qcq() ;
301  dzeta = 0 ;
302  }
303  }
304 
305  // Output files
306  // -------------
307 
308  ofstream fichconv("convergence.d") ; // Output file for diff_ent
309  fichconv << "# diff_ent GRV2 max_triax vit_triax" << endl ;
310 
311  ofstream fichfreq("frequency.d") ; // Output file for omega
312  fichfreq << "# f [Hz]" << endl ;
313 
314  ofstream fichevol("evolution.d") ; // Output file for various quantities
315  fichevol <<
316  "# |dH/dr_eq/dH/dr_pole| r_pole/r_eq ent_c"
317  << endl ;
318 
319  diff_ent = 1 ;
320  double err_grv2 = 1 ;
321  double max_triax_prev = 0 ; // Triaxial amplitude at previous step
322 
323  //=========================================================================
324  // Start of iteration
325  //=========================================================================
326 
327  for(int mer=0 ; (diff_ent > precis) && (mer<mer_max) ; mer++ ) {
328 
329  cout << "-----------------------------------------------" << endl ;
330  cout << "step: " << mer << endl ;
331  cout << "diff_ent = " << display_bold << diff_ent << display_normal
332  << endl ;
333  cout << "err_grv2 = " << err_grv2 << endl ;
334  fichconv << mer ;
335  fichfreq << mer ;
336  fichevol << mer ;
337 
338  // Switch on rotation
339  if (mer >= mer_rot) {
340 
341  if (mer < mer_change_omega) {
342  omega_c = omega_ini ;
343  }
344  else {
345  if (mer <= mer_fix_omega) {
346  omega_c = omega_ini + accrois_omega *
347  (mer - mer_change_omega) ;
348  }
349  }
350 
351  }
352 
353  //-----------------------------------------------
354  // Sources of the Poisson equations
355  //-----------------------------------------------
356 
357  // Source for nu
358  // -------------
359  Scalar bet = log(bbb) ;
360  bet.std_spectral_base() ;
361 
362  Vector d_logn = logn.derive_cov( mp.flat_met_spher() ) ;
363  Vector d_bet = bet.derive_cov( mp.flat_met_spher() ) ;
364 
365  if (relativistic) {
366  source_nuf = qpig * a_car *( ener_euler + s_euler ) ;
367 
368  source_nuq = ak_car - d_logn(1)*(d_logn(1)+d_bet(1))
369  - d_logn(2)*(d_logn(2)+d_bet(2))
370  - d_logn(3)*(d_logn(3)+d_bet(3)) ;
371  }
372  else {
373  source_nuf = qpig * nbar ;
374 
375  source_nuq = 0 ;
376  }
377  source_nuf.std_spectral_base() ;
378  source_nuq.std_spectral_base() ;
379 
380  // Source for dzeta
381  // ----------------
382  source_dzf = 2 * qpig * a_car * (press + (ener_euler+press) * uuu*uuu ) ;
383  source_dzf.std_spectral_base() ;
384 
385  source_dzq = 1.5 * ak_car
386  - d_logn(1)*d_logn(1) - d_logn(2)*d_logn(2) - d_logn(3)*d_logn(3) ;
387  source_dzq.std_spectral_base() ;
388 
389  // Source for tggg
390  // ---------------
391 
392  source_tggg = 4 * qpig * nn * a_car * bbb * press ;
393  source_tggg.std_spectral_base() ;
394 
395  source_tggg.mult_rsint() ;
396 
397 
398  // Source for shift
399  // ----------------
400 
401  // Matter term:
402  source_shift = (-4*qpig) * nn * a_car * (ener_euler + press)
403  * u_euler ;
404 
405  // Quadratic terms:
406  Vector vtmp = 6 * bet.derive_con( mp.flat_met_spher() )
407  - 2 * logn.derive_con( mp.flat_met_spher() ) ;
408  vtmp.change_triad(mp.get_bvect_cart()) ;
409 
410  Vector squad = nn * contract(tkij, 1, vtmp, 0) ;
411 
412  source_shift = source_shift + squad.up(0, mp.flat_met_cart() ) ;
413 
414  //----------------------------------------------
415  // Resolution of the Poisson equation for nuf
416  //----------------------------------------------
417 
418  source_nuf.poisson(par_poisson_nuf, nuf) ;
419 
420  cout << "Test of the Poisson equation for nuf :" << endl ;
421  Tbl err = source_nuf.test_poisson(nuf, cout, true) ;
422  diff_nuf = err(0, 0) ;
423 
424  //---------------------------------------
425  // Triaxial perturbation of nuf
426  //---------------------------------------
427 
428  if (mer == mer_triax) {
429 
430  if ( mg->get_np(0) == 1 ) {
431  cout <<
432  "Star_rot_diff::equilibrium: np must be stricly greater than 1"
433  << endl << " to set a triaxial perturbation !" << endl ;
434  abort() ;
435  }
436 
437  const Coord& phi = mp.phi ;
438  const Coord& sint = mp.sint ;
439  Scalar perturb(mp) ;
440  perturb = 1 + ampli_triax * sint*sint * cos(2*phi) ;
441  nuf = nuf * perturb ;
442 
443  nuf.std_spectral_base() ; // set the bases for spectral expansions
444  // to be the standard ones for a
445  // scalar field
446 
447  }
448 
449  // Monitoring of the triaxial perturbation
450  // ---------------------------------------
451 
452  const Valeur& va_nuf = nuf.get_spectral_va() ;
453  va_nuf.coef() ; // Computes the spectral coefficients
454  double max_triax = 0 ;
455 
456  if ( mg->get_np(0) > 1 ) {
457 
458  for (int l=0; l<nz; l++) { // loop on the domains
459  for (int j=0; j<mg->get_nt(l); j++) {
460  for (int i=0; i<mg->get_nr(l); i++) {
461 
462  // Coefficient of cos(2 phi) :
463  double xcos2p = (*(va_nuf.c_cf))(l, 2, j, i) ;
464 
465  // Coefficient of sin(2 phi) :
466  double xsin2p = (*(va_nuf.c_cf))(l, 3, j, i) ;
467 
468  double xx = sqrt( xcos2p*xcos2p + xsin2p*xsin2p ) ;
469 
470  max_triax = ( xx > max_triax ) ? xx : max_triax ;
471  }
472  }
473  }
474 
475  }
476 
477  cout << "Triaxial part of nuf : " << max_triax << endl ;
478 
479  if (relativistic) {
480 
481  //----------------------------------------------
482  // Resolution of the Poisson equation for nuq
483  //----------------------------------------------
484 
485  source_nuq.poisson(par_poisson_nuq, nuq) ;
486 
487  cout << "Test of the Poisson equation for nuq :" << endl ;
488  err = source_nuq.test_poisson(nuq, cout, true) ;
489  diff_nuq = err(0, 0) ;
490 
491  //---------------------------------------------------------
492  // Resolution of the vector Poisson equation for the shift
493  //---------------------------------------------------------
494 
495  for (int i=1; i<=3; i++) {
496  if(source_shift(i).get_etat() != ETATZERO) {
497  if(source_shift(i).dz_nonzero()) {
498  assert( source_shift(i).get_dzpuis() == 4 ) ;
499  }
500  else{
501  (source_shift.set(i)).set_dzpuis(4) ;
502  }
503  }
504  }
505 
506  double lambda_shift = double(1) / double(3) ;
507 
508  if ( mg->get_np(0) == 1 ) {
509  lambda_shift = 0 ;
510  }
511 
512  Tenseur csource_shift(mp, 1, CON, mp.get_bvect_cart() ) ;
513  csource_shift.set_etat_qcq() ;
514  if ( (source_shift(1).get_etat() == ETATZERO) &&
515  (source_shift(2).get_etat() == ETATZERO) &&
516  (source_shift(3).get_etat() == ETATZERO) ) {
517  csource_shift.set_etat_zero() ;
518  }
519  else {
520  csource_shift.set_etat_qcq() ;
521  for (int i=1; i<=3; i++) {
522  csource_shift.set(i-1) = source_shift(i) ;
523  }
524  csource_shift.set(2).set_etat_zero() ;
525  }
526 
527  csource_shift.poisson_vect(lambda_shift, par_poisson_vect,
528  cshift, cw_shift, ckhi_shift) ;
529  // beta = -source_shift.poisson(lambda_shift, par_poisson_vect, 2) ;
530 
531  for (int i=1; i<=3; i++) {
532  beta.set(i) = - cshift(i-1) ;
533  w_shift.set(i) = cw_shift(i-1) ;
534  }
535  khi_shift = ckhi_shift() ;
536 
537  cout << "Test of the Poisson equation for shift_x :" << endl ;
538  err = source_shift(1).test_poisson(-beta(1), cout, true) ;
539  diff_shift_x = err(0, 0) ;
540 
541  cout << "Test of the Poisson equation for shift_y :" << endl ;
542  err = source_shift(2).test_poisson(-beta(2), cout, true) ;
543  diff_shift_y = err(0, 0) ;
544 
545  // Computation of tnphi and nphi from the Cartesian components
546  // of the shift
547  // -----------------------------------------------------------
548 
549  fait_nphi() ;
550 
551  }
552 
553  //-----------------------------------------
554  // Determination of the fluid velociy U
555  //-----------------------------------------
556 
557  if (mer > mer_fix_omega + delta_mer_kep) {
558 
559  omega_c *= fact_omega ; // Increase of the angular velocity if
560  } // fact_omega != 1
561 
562 
563  bool omega_trop_grand = false ;
564  bool kepler = true ;
565 
566  while ( kepler ) {
567 
568  // Possible decrease of Omega to ensure a velocity < c
569 
570  bool superlum = true ;
571 
572  while ( superlum ) {
573 
574  // Computation of Omega(r,theta)
575 
576  // cout << omega_c << endl ;
577  if (mer < mer_diff) {
578  omega_field = omega_c ;
579  }
580  else if (omega_c == 0.) {
581  omega_field = 0 ;
582  }
583  else if (par_frot.get_taille() == 5) { // Uryu rotation profile
584  // First, compute F_e and F_max
585  Scalar brst2 = bbb ;
586  brst2.annule_domain(nzm1) ;
587  brst2.std_spectral_base() ;
588  brst2.mult_rsint() ; // Multiplication by r sin(theta)
589  brst2 = brst2*brst2 ;
590  Scalar nnn2 = nn * nn ;
591 
592  double omnp = omega_field.val_grid_point(l_b, k_b, j_b, i_b) - nphi.val_grid_point(l_b, k_b, j_b, i_b) ;
593  double F_e = brst2.val_grid_point(l_b, k_b, j_b, i_b) * omnp /
594  ( nnn2.val_grid_point(l_b, k_b, j_b, i_b) -
595  brst2.val_grid_point(l_b, k_b, j_b, i_b) * omnp * omnp ) ;
596 
597  if (F_e == double(0) || mer == mer_diff) {} // Initial iteration
598  else {
599  int l, k, j, i ;
600  double om_max = 0 ;
601  double om_lkji, F_max ;
602  for (l=0; l<nzet+1; l++) {
603  for (k=0; k<mg->get_np(l); k++) {
604  for (j=0; j<mg->get_nt(l); j++) {
605  for (i=0; i<mg->get_nr(l); i++) {
606  om_lkji = omega_field.val_grid_point(l, k, j, i) ;
607  if (om_lkji > om_max) {
608  om_max = om_lkji ;
609  omnp = om_max - nphi.val_grid_point(l, k, j, i) ;
610  F_max = brst2.val_grid_point(l, k, j, i) * omnp /
611  ( nnn2.val_grid_point(l, k, j, i) -
612  brst2.val_grid_point(l, k, j, i) * omnp * omnp ) ;
613  }
614  }
615  }
616  }
617  }
618 
619  // Now A^2 and B^2, parameters for omega_frot, can be computed
620  double lambda1 = par_frot(1) ;
621  double lambda2 = par_frot(2) ;
622  int p = 1 ;
623  int q = 3 ;
624  par_frot.set(3) = pow(pow(F_e*F_max,p)/pow(omega_c, p+q) * (lambda2*pow(F_e, q)-lambda1*pow(F_max, q) )
625  / ((lambda1-1)*pow(F_e, p) - (lambda2-1)*pow(F_max, p)), 1./(p+q) ) ;
626  par_frot.set(4) = F_e*F_max/omega_c * pow((lambda2*pow(F_e, q)-lambda1*pow(F_max, q))
627  / (lambda2*(lambda1-1)*pow(F_e, p+q) - lambda1*(lambda2-1)*pow(F_max, p+q)), 1./p) ;
628 
629  cout << F_e << " " << F_max << " " << par_frot(3) << " " << par_frot(4) << endl ;
630  // abort() ;
631 
632  }
633 
634  // From A and B, compute Omega_e -> Omega_c
635  /* double omeg_min = 1. ;
636  double omeg_max ;
637  if (omega_max == 0) {
638  omeg_max = 2000;
639  }
640  else {
641  omeg_max = 2 * omega_max ;
642  }
643  double precis1 = 1.e-14 ;
644  int nitermax1 = 100 ;
645 
646  double omega_e = 0 ;
647 
648  fait_omega_e(omega_e, omeg_min, omeg_max, precis1, nitermax1) ;
649 
650  cout << "omega_e: " << omega_e << endl ;
651 
652  omega_c = omega_e / par_frot(2) ; */
653 
654  //cout << omega_c << endl ;
655  par_frot.set(0) = omega_c ;
656 
657  double omeg_min = 0 ;
658  double omeg_max = par_frot(1) * omega_c ;
659  double precis1 = 1.e-14 ;
660  int nitermax1 = 100 ;
661 
662  fait_omega_field(omeg_min, omeg_max, precis1, nitermax1) ;
663  //cout << omega_min << ", " << omega_max << endl ;
664  /*
665 
666  cout << get_omega_c() << " " << F_e << " " << F_max << " " << endl;
667  cout << par_frot << endl;*/
668  // abort() ;
669  }
670  else { // Usual rotation profile
671  par_frot.set(0) = omega_c ;
672  if (par_frot(2) != double(0)) { // fixed a = R_eq / R_0
673  par_frot.set(1) = ray_eq() / par_frot(2) ;
674  }
675  double omeg_min = 0 ;
676  double omeg_max = omega_c ;
677  double precis1 = 1.e-14 ;
678  int nitermax1 = 100 ;
679 
680  fait_omega_field(omeg_min, omeg_max, precis1, nitermax1) ;
681  }
682 
683  // New fluid velocity U :
684 
685  Scalar tmp = omega_field - nphi ;
686  tmp.annule_domain(nzm1) ;
687  tmp.std_spectral_base() ;
688 
689  tmp.mult_rsint() ; // Multiplication by r sin(theta)
690 
691  uuu = bbb / nn * tmp ;
692 
693  if (uuu.get_etat() == ETATQCQ) {
694  // Same basis as (Omega -N^phi) r sin(theta) :
695  (uuu.set_spectral_va()).set_base( tmp.get_spectral_va().get_base() ) ;
696  }
697 
698  // Is the new velocity larger than c in the equatorial plane ?
699 
700  superlum = false ;
701 
702  for (int l=0; l<nzet; l++) {
703  for (int i=0; i<mg->get_nr(l); i++) {
704 
705  double u1 = uuu.val_grid_point(l, 0, j_b, i) ;
706  if (u1 >= 1.) { // superluminal velocity
707  superlum = true ;
708  cout << "U > c for l, i : " << l << " " << i
709  << " U = " << u1 << endl ;
710  }
711  }
712  }
713  if ( superlum ) {
714  cout << "**** VELOCITY OF LIGHT REACHED ****" << endl ;
715  omega_c /= fact_omega ; // Decrease of Omega_c
716  cout << "New central rotation frequency : "
717  << omega/(2.*M_PI) * f_unit << " Hz" << endl ;
718  omega_trop_grand = true ;
719  }
720  } // end of while ( superlum )
721 
722 
723  // New computation of U (which this time is not superluminal)
724  // as well as of gam_euler, ener_euler, etc...
725  // -----------------------------------
726 
727  hydro_euler() ;
728 
729 
730  //------------------------------------------------------
731  // First integral of motion
732  //------------------------------------------------------
733 
734  // Centrifugal potential :
735  if (relativistic) {
736  mlngamma = - log( gam_euler ) ;
737  }
738  else {
739  mlngamma = - 0.5 * uuu*uuu ;
740  }
741 
742  // Equatorial values of various potentials :
743  double nuf_b = nuf.val_grid_point(l_b, k_b, j_b, i_b) ;
744  double nuq_b = nuq.val_grid_point(l_b, k_b, j_b, i_b) ;
745  double mlngamma_b = mlngamma.val_grid_point(l_b, k_b, j_b, i_b) ;
746  double primf_b = prim_field.val_grid_point(l_b, k_b, j_b, i_b) ;
747 
748 
749  // Central values of various potentials :
750  double nuf_c = nuf.val_grid_point(0,0,0,0) ;
751  double nuq_c = nuq.val_grid_point(0,0,0,0) ;
752  double mlngamma_c = 0 ;
753  double primf_c = prim_field.val_grid_point(0,0,0,0) ;
754 
755  // Scale factor to ensure that the enthalpy is equal to ent_b at
756  // the equator
757  double alpha_r2 = ( ent_c - ent_b + mlngamma_c - mlngamma_b
758  + nuq_c - nuq_b + primf_c - primf_b)
759  / ( nuf_b - nuf_c ) ;
760  alpha_r = sqrt(alpha_r2) ;
761  cout << "alpha_r = " << alpha_r << endl ;
762 
763  // Readjustment of nu :
764  // -------------------
765 
766  logn = alpha_r2 * nuf + nuq ;
767  double nu_c = logn.val_grid_point(0,0,0,0) ;
768 
769  // First integral --> enthalpy in all space
770  //-----------------
771 
772  ent = (ent_c + nu_c + mlngamma_c) - logn - mlngamma - prim_field ;
773 
774  // Test: is the enthalpy negative somewhere in the equatorial plane
775  // inside the star ? If yes, this means that the Keplerian velocity
776  // has been overstep.
777 
778  kepler = false ;
779  for (int l=0; l<nzet; l++) {
780  int imax = mg->get_nr(l) - 1 ;
781  if (l == l_b) imax-- ; // The surface point is skipped
782  for (int i=0; i<imax; i++) {
783  if ( ent.val_grid_point(l, 0, j_b, i) < 0. ) {
784  kepler = true ;
785  cout << "ent < 0 for l, i : " << l << " " << i
786  << " ent = " << ent.val_grid_point(l, 0, j_b, i) << endl ;
787  }
788  }
789  }
790 
791  if ( kepler ) {
792  cout << "**** KEPLERIAN VELOCITY REACHED ****" << endl ;
793  omega_c /= fact_omega ; // Omega is decreased
794  cout << "New central rotation frequency : "
795  << omega_c/(2.*M_PI) * f_unit << " Hz" << endl ;
796  omega_trop_grand = true ;
797  }
798 
799  } // End of while ( kepler )
800 
801  if ( omega_trop_grand ) { // fact_omega is decreased for the
802  // next step
803  fact_omega = sqrt( fact_omega ) ;
804  cout << "**** New fact_omega : " << fact_omega << endl ;
805  }
806 
807  //----------------------------------------------------
808  // Adaptation of the mapping to the new enthalpy field
809  //----------------------------------------------------
810 
811  // Shall the adaptation be performed (cusp) ?
812  // ------------------------------------------
813 
814  double dent_eq = ent.dsdr().val_grid_point(l_b, k_b, j_b, i_b) ;
815  double dent_pole = ent.dsdr().val_grid_point(l_b, k_b, 0, i_b) ;
816  double rap_dent = fabs( dent_eq / dent_pole ) ;
817  cout << "| dH/dr_eq / dH/dr_pole | = " << rap_dent << endl ;
818 
819  if ( rap_dent < thres_adapt ) {
820  adapt_flag = 0 ; // No adaptation of the mapping
821  cout << "******* FROZEN MAPPING *********" << endl ;
822  }
823  else{
824  adapt_flag = 1 ; // The adaptation of the mapping is to be
825  // performed
826  }
827 
828  mp_prev = mp_et ;
829 
830  Cmp cent(ent) ;
831  mp.adapt(cent, par_adapt) ;
832 
833  //----------------------------------------------------
834  // Computation of the enthalpy at the new grid points
835  //----------------------------------------------------
836 
837  mp_prev.homothetie(alpha_r) ;
838 
839  mp.reevaluate(&mp_prev, nzet+1, cent) ;
840  ent = cent ;
841 
842  //----------------------------------------------------
843  // Equation of state
844  //----------------------------------------------------
845 
846  equation_of_state() ; // computes new values for nbar (n), ener (e)
847  // and press (p) from the new ent (H)
848 
849  //---------------------------------------------------------
850  // Matter source terms in the gravitational field equations
851  //---------------------------------------------------------
852 
853  //## Computation of tnphi and nphi from the Cartesian components
854  // of the shift for the test in hydro_euler():
855 
856  fait_nphi() ;
857 
858  hydro_euler() ; // computes new values for ener_euler (E),
859  // s_euler (S) and u_euler (U^i)
860 
861  if (relativistic) {
862 
863  //-------------------------------------------------------
864  // 2-D Poisson equation for tggg
865  //-------------------------------------------------------
866 
867  Cmp csource_tggg(source_tggg) ;
868  Cmp ctggg(tggg) ;
869  mp.poisson2d(csource_tggg, mp.cmp_zero(), par_poisson_tggg,
870  ctggg) ;
871  tggg = ctggg ;
872 
873 
874  //-------------------------------------------------------
875  // 2-D Poisson equation for dzeta
876  //-------------------------------------------------------
877 
878  Cmp csource_dzf(source_dzf) ;
879  Cmp csource_dzq(source_dzq) ;
880  Cmp cdzeta(dzeta) ;
881  mp.poisson2d(csource_dzf, csource_dzq, par_poisson_dzeta,
882  cdzeta) ;
883  dzeta = cdzeta ;
884 
885  err_grv2 = lbda_grv2 - 1;
886  cout << "GRV2: " << err_grv2 << endl ;
887 
888  }
889  else {
890  err_grv2 = grv2() ;
891  }
892 
893 
894  //---------------------------------------
895  // Computation of the metric coefficients (except for N^phi)
896  //---------------------------------------
897 
898  // Relaxations on nu and dzeta :
899 
900  if (mer >= 10) {
901  logn = relax * logn + relax_prev * logn_prev ;
902 
903  dzeta = relax * dzeta + relax_prev * dzeta_prev ;
904  }
905 
906  // Update of the metric coefficients N, A, B and computation of K_ij :
907 
908  update_metric() ;
909 
910  //-----------------------
911  // Informations display
912  //-----------------------
913 
914  partial_display(cout) ;
915  fichfreq << " " << omega_c / (2*M_PI) * f_unit ;
916  fichevol << " " << rap_dent ;
917  fichevol << " " << ray_pole() / ray_eq() ;
918  fichevol << " " << ent_c ;
919 
920  //-----------------------------------------
921  // Convergence towards a given baryon mass
922  //-----------------------------------------
923 
924  if (mer > mer_mass) {
925 
926  double xx ;
927  if (mbar_wanted > 0.) {
928  xx = mass_b() / mbar_wanted - 1. ;
929  cout << "Discrep. baryon mass <-> wanted bar. mass : " << xx
930  << endl ;
931  }
932  else{
933  xx = mass_g() / fabs(mbar_wanted) - 1. ;
934  cout << "Discrep. grav. mass <-> wanted grav. mass : " << xx
935  << endl ;
936  }
937  double xprog = ( mer > 2*mer_mass) ? 1. :
938  double(mer-mer_mass)/double(mer_mass) ;
939  xx *= xprog ;
940  double ax = .5 * ( 2. + xx ) / (1. + xx ) ;
941  double fact = pow(ax, aexp_mass) ;
942  cout << " xprog, xx, ax, fact : " << xprog << " " <<
943  xx << " " << ax << " " << fact << endl ;
944 
945  if ( change_ent ) {
946  ent_c *= fact ;
947  }
948  else {
949  if (mer%4 == 0) omega_c *= fact ;
950  }
951  }
952 
953 
954  //------------------------------------------------------------
955  // Relative change in enthalpy with respect to previous step
956  //------------------------------------------------------------
957 
958  Tbl diff_ent_tbl = diffrel( ent, ent_prev ) ;
959  diff_ent = diff_ent_tbl(0) ;
960  for (int l=1; l<nzet; l++) {
961  diff_ent += diff_ent_tbl(l) ;
962  }
963  diff_ent /= nzet ;
964 
965  fichconv << " " << log10( fabs(diff_ent) + 1.e-16 ) ;
966  fichconv << " " << log10( fabs(err_grv2) + 1.e-16 ) ;
967  fichconv << " " << log10( fabs(max_triax) + 1.e-16 ) ;
968 
969  vit_triax = 0 ;
970  if ( (mer > mer_triax+1) && (max_triax_prev > 1e-13) ) {
971  vit_triax = (max_triax - max_triax_prev) / max_triax_prev ;
972  }
973 
974  fichconv << " " << vit_triax ;
975 
976  //------------------------------
977  // Recycling for the next step
978  //------------------------------
979 
980  ent_prev = ent ;
981  logn_prev = logn ;
982  dzeta_prev = dzeta ;
983  max_triax_prev = max_triax ;
984 
985  fichconv << endl ;
986  fichfreq << endl ;
987  fichevol << endl ;
988  fichconv.flush() ;
989  fichfreq.flush() ;
990  fichevol.flush() ;
991 
992  } // End of main loop
993 
994  //=========================================================================
995  // End of iteration
996  //=========================================================================
997 
998  ssjm1_tggg = cssjm1_tggg ;
999  ssjm1_khi = cssjm1_khi ;
1000  for (int i=1; i<=3; i++) {
1001  ssjm1_wshift.set(i) = cssjm1_wshift(i-1) ;
1002  }
1003 
1004  fichconv.close() ;
1005  fichfreq.close() ;
1006  fichevol.close() ;
1007 
1008 }
1009 }
virtual double mass_g() const
Gravitational mass.
void annule_domain(int l)
Sets the Tensor to zero in a given domain.
Definition: tensor.C:676
Cmp log(const Cmp &)
Neperian logarithm.
Definition: cmp_math.C:299
Mtbl_cf * c_cf
Coefficients of the spectral expansion of the function.
Definition: valeur.h:312
void add_tenseur_mod(Tenseur &ti, int position=0)
Adds the address of a new modifiable Tenseur to the list.
Definition: param.C:1145
Vector ssjm1_wshift
Effective source at the previous step for the resolution of the vector Poisson equation for ...
Definition: star_rot.h:237
Scalar dzeta
Metric potential .
Definition: star_rot.h:146
Component of a tensorial field *** DEPRECATED : use class Scalar instead ***.
Definition: cmp.h:446
Scalar a_car
Square of the metric factor A.
Definition: star_rot.h:116
Radial mapping of rather general form.
Definition: map.h:2859
void add_int(const int &n, int position=0)
Adds the address of a new int to the list.
Definition: param.C:249
Scalar prim_field
Field .
Definition: star_rot_diff.h:79
Map & mp
Mapping associated with the star.
Definition: star.h:180
Scalar nuf
Part of the Metric potential = logn generated by the matter terms.
Definition: star_rot.h:138
const Cmp & cmp_zero() const
Returns the null Cmp defined on *this.
Definition: map.h:834
int get_np(int l) const
Returns the number of points in the azimuthal direction ( ) in domain no. l.
Definition: grilles.h:481
void coef() const
Computes the coeffcients of *this.
Definition: valeur_coef.C:151
Cmp sqrt(const Cmp &)
Square root.
Definition: cmp_math.C:223
Tbl par_frot
Parameters of the function .
Definition: star_rot_diff.h:70
Scalar khi_shift
Scalar used in the decomposition of shift , following Shibata&#39;s prescription [Prog.
Definition: star_rot.h:172
bool relativistic
Indicator of relativity: true for a relativistic star, false for a Newtonian one. ...
Definition: star_rot.h:106
Scalar bbb
Metric factor B.
Definition: star_rot.h:119
Lorene prototypes.
Definition: app_hor.h:67
Standard units of space, time and mass.
Tensor up(int ind, const Metric &gam) const
Computes a new tensor by raising an index of *this.
const Mg3d * get_mg() const
Gives the Mg3d on which the mapping is defined.
Definition: map.h:792
double & set(int i)
Read/write of a particular element (index i) (1D case)
Definition: tbl.h:301
Tensor field of valence 0 (or component of a tensorial field).
Definition: scalar.h:399
Scalar poisson() const
Solves the scalar Poisson equation with *this as a source.
Definition: scalar_pde.C:139
virtual double grv2() const
Error on the virial identity GRV2.
virtual void adapt(const Cmp &ent, const Param &par, int nbr=0)=0
Adaptation of the mapping to a given scalar field.
int get_type_t() const
Returns the type of sampling in the direction: SYM : : symmetry with respect to the equatorial pl...
Definition: grilles.h:504
Basic integer array class.
Definition: itbl.h:122
virtual void std_spectral_base()
Sets the spectral bases of the Valeur va to the standard ones for a scalar field. ...
Definition: scalar.C:790
void update_metric()
Computes metric coefficients from known potentials.
Values and coefficients of a (real-value) function.
Definition: valeur.h:297
Scalar nuq
Part of the Metric potential = logn generated by the quadratic terms.
Definition: star_rot.h:143
double omega
Rotation angular velocity ([f_unit] )
Definition: star_rot.h:113
Scalar nbar
Baryon density in the fluid frame.
Definition: star.h:192
virtual void change_triad(const Base_vect &)
Sets a new vectorial basis (triad) of decomposition and modifies the components accordingly.
int get_etat() const
Returns the logical state ETATNONDEF (undefined), ETATZERO (null) or ETATQCQ (ordinary).
Definition: scalar.h:566
Scalar ent
Log-enthalpy.
Definition: star.h:190
Scalar s_euler
Trace of the stress scalar in the Eulerian frame.
Definition: star.h:201
virtual void set_etat_qcq()
Sets the logical state to ETATQCQ (ordinary state).
Definition: scalar.C:359
Vector beta
Shift vector.
Definition: star.h:228
Tbl test_poisson(const Scalar &uu, ostream &ostr, bool detail=false) const
Checks if a Poisson equation with *this as a source has been correctly solved.
const Vector & derive_con(const Metric &gam) const
Returns the "contravariant" derivative of *this with respect to some metric , by raising the index of...
Definition: scalar_deriv.C:401
Tensor field of valence 1.
Definition: vector.h:188
Cmp cos(const Cmp &)
Cosine.
Definition: cmp_math.C:97
const Metric_flat & flat_met_cart() const
Returns the flat metric associated with the Cartesian coordinates and with components expressed in th...
Definition: map.C:337
Tbl diffrel(const Cmp &a, const Cmp &b)
Relative difference between two Cmp (norme version).
Definition: cmp_math.C:507
virtual void hydro_euler()
Computes the hydrodynamical quantities relative to the Eulerian observer from those in the fluid fram...
Scalar ssjm1_tggg
Effective source at the previous step for the resolution of the Poisson equation for tggg ...
Definition: star_rot.h:220
void add_double_mod(double &x, int position=0)
Adds the address of a new modifiable double to the list.
Definition: param.C:456
double val_grid_point(int l, int k, int j, int i) const
Returns the value of the field at a specified grid point.
Definition: scalar.h:649
Coord phi
coordinate centered on the grid
Definition: map.h:747
void set_etat_qcq()
Sets the logical state to ETATQCQ (ordinary state).
Definition: tbl.C:364
int nzet
Number of domains of *mp occupied by the star.
Definition: star.h:183
Coord sint
Definition: map.h:748
Scalar nphi
Metric coefficient .
Definition: star_rot.h:125
virtual void equilibrium(double ent_c, double omega0, double fact_omega, int nzadapt, const Tbl &ent_limit, const Itbl &icontrol, const Tbl &control, double mbar_wanted, double aexp_mass, Tbl &diff, Param *=0x0)
Computes an equilibrium configuration.
Scalar gam_euler
Lorentz factor between the fluid and Eulerian observers.
Definition: star.h:204
Cmp & set()
Read/write for a scalar (see also operator=(const Cmp&) ).
Definition: tenseur.C:840
virtual void poisson2d(const Cmp &source_mat, const Cmp &source_quad, Param &par, Cmp &uu) const =0
Computes the solution of a 2-D Poisson equation.
Scalar press
Fluid pressure.
Definition: star.h:194
virtual double mass_b() const
Baryon mass.
Scalar ssjm1_nuq
Effective source at the previous step for the resolution of the Poisson equation for nuq by means of ...
Definition: star_rot.h:210
Parameter storage.
Definition: param.h:125
void add_tbl(const Tbl &ti, int position=0)
Adds the address of a new Tbl to the list.
Definition: param.C:525
int get_nzone() const
Returns the number of domains.
Definition: grilles.h:467
virtual void homothetie(double lambda)
Sets a new radial scale.
Definition: map_et.C:928
Vector u_euler
Fluid 3-velocity with respect to the Eulerian observer.
Definition: star.h:207
Sym_tensor tkij
Tensor related to the extrinsic curvature tensor by .
Definition: star_rot.h:179
void mult_rsint()
Multiplication by everywhere; dzpuis is not changed.
Cmp pow(const Cmp &, int)
Power .
Definition: cmp_math.C:351
Tenseur contract(const Tenseur &, int id1, int id2)
Self contraction of two indices of a Tenseur .
Scalar logn
Logarithm of the lapse N .
Definition: star.h:222
Active physical coordinates and mapping derivatives.
Definition: coord.h:90
double ray_pole() const
Coordinate radius at [r_unit].
Definition: star_global.C:281
int get_nr(int l) const
Returns the number of points in the radial direction ( ) in domain no. l.
Definition: grilles.h:471
Multi-domain grid.
Definition: grilles.h:276
virtual void partial_display(ostream &) const
Printing of some informations, excluding all global quantities.
Definition: star_rot.C:613
void add_scalar_mod(Scalar &ti, int position=0)
Adds the address of a new modifiable Scalar to the list.
Definition: param.C:1420
const Base_vect_cart & get_bvect_cart() const
Returns the Cartesian basis associated with the coordinates (x,y,z) of the mapping, i.e.
Definition: map.h:818
Scalar nn
Lapse function N .
Definition: star.h:225
Cmp log10(const Cmp &)
Basis 10 logarithm.
Definition: cmp_math.C:325
Cmp abs(const Cmp &)
Absolute value.
Definition: cmp_math.C:413
Scalar ssjm1_khi
Effective source at the previous step for the resolution of the Poisson equation for the scalar by m...
Definition: star_rot.h:228
int get_taille() const
Gives the total size (ie dim.taille)
Definition: tbl.h:417
Scalar uuu
Norm of u_euler.
Definition: star_rot.h:133
virtual void reevaluate(const Map *mp_prev, int nzet, Cmp &uu) const =0
Recomputes the values of a Cmp at the collocation points after a change in the mapping.
void add_double(const double &x, int position=0)
Adds the the address of a new double to the list.
Definition: param.C:318
double ray_eq() const
Coordinate radius at , [r_unit].
Definition: star_global.C:111
const Scalar & dsdr() const
Returns of *this .
Definition: scalar_deriv.C:112
Scalar ssjm1_nuf
Effective source at the previous step for the resolution of the Poisson equation for nuf by means of ...
Definition: star_rot.h:204
Basic array class.
Definition: tbl.h:164
int get_nt(int l) const
Returns the number of points in the co-latitude direction ( ) in domain no. l.
Definition: grilles.h:476
Valeur & set_spectral_va()
Returns va (read/write version)
Definition: scalar.h:616
Scalar & set(int)
Read/write access to a component.
Definition: vector.C:302
void set_etat_qcq()
Sets the logical state to ETATQCQ (ordinary state).
Definition: tenseur.C:652
void add_cmp_mod(Cmp &ti, int position=0)
Adds the address of a new modifiable Cmp to the list.
Definition: param.C:1007
Scalar tggg
Metric potential .
Definition: star_rot.h:149
void equation_of_state()
Computes the proper baryon and energy density, as well as pressure from the enthalpy.
Definition: star.C:465
void fait_nphi()
Computes tnphi and nphi from the Cartesian components of the shift, stored in shift ...
Definition: star_rot.C:779
Scalar ak_car
Scalar .
Definition: star_rot.h:198
const Vector & derive_cov(const Metric &gam) const
Returns the gradient (1-form = covariant vector) of *this
Definition: scalar_deriv.C:389
Vector w_shift
Vector used in the decomposition of shift , following Shibata&#39;s prescription [Prog.
Definition: star_rot.h:162
void fait_omega_field(double omeg_min, double omeg_max, double precis, int nitermax)
Computes (member omega_field ).
Scalar ener_euler
Total energy density in the Eulerian frame.
Definition: star.h:198
const Metric_flat & flat_met_spher() const
Returns the flat metric associated with the spherical coordinates and with components expressed in th...
Definition: map.C:327
Scalar omega_field
Field .
Definition: star_rot_diff.h:73
Tensor handling *** DEPRECATED : use class Tensor instead ***.
Definition: tenseur.h:304
void add_int_mod(int &n, int position=0)
Adds the address of a new modifiable int to the list.
Definition: param.C:388
const Valeur & get_spectral_va() const
Returns va (read only version)
Definition: scalar.h:613