LORENE
scalar_deriv.C
1 /*
2  * Computations of partial derivatives d/dx, d/dy and d/dz of a Scalar.
3  */
4 
5 /*
6  * Copyright (c) 2003-2004 Eric Gourgoulhon & Jerome Novak
7  *
8  * Copyright (c) 1999-2001 Eric Gourgoulhon (for a preceding Cmp version)
9  * Copyright (c) 1999-2001 Philippe Grandclement (for a preceding Cmp version)
10  *
11  * This file is part of LORENE.
12  *
13  * LORENE is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * LORENE is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with LORENE; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26  *
27  */
28 
29 
30 
31 
32 
33 
34 /*
35  * Revision 1.17 2005/11/24 09:25:08 j_novak
36  * Added the Scalar version for the Laplacian
37  *
38  * Revision 1.16 2005/09/15 15:51:27 j_novak
39  * The "rotation" (change of triad) methods take now Scalars as default
40  * arguments.
41  *
42  * Revision 1.15 2005/05/25 16:11:05 j_novak
43  * Better handling of the case with no compactified domain.
44  *
45  * Revision 1.14 2004/08/24 09:14:52 p_grandclement
46  * Addition of some new operators, like Poisson in 2d... It now requieres the
47  * GSL library to work.
48  *
49  * Also, the way a variable change is stored by a Param_elliptic is changed and
50  * no longer uses Change_var but rather 2 Scalars. The codes using that feature
51  * will requiere some modification. (It should concern only the ones about monopoles)
52  *
53  * Revision 1.13 2004/06/22 08:50:00 p_grandclement
54  * Addition of everything needed for using the logarithmic mapping
55  *
56  * Revision 1.12 2004/02/26 22:51:34 e_gourgoulhon
57  * Added methods derive_cov, derive_con and derive_lie.
58  *
59  * Revision 1.11 2004/01/28 14:02:06 j_novak
60  * Suppressed base handling.
61  *
62  * Revision 1.10 2004/01/28 13:25:42 j_novak
63  * The ced_mult_r arguments have been suppressed from the Scalar::*dsd* methods.
64  * In the div/mult _r_dzpuis, there is no more default value.
65  *
66  * Revision 1.9 2004/01/27 15:10:02 j_novak
67  * New methods Scalar::div_r_dzpuis(int) and Scalar_mult_r_dzpuis(int)
68  * which replace div_r_inc*. Tried to clean the dzpuis handling.
69  * WARNING: no testing at this point!!
70  *
71  * Revision 1.8 2003/11/03 13:37:59 j_novak
72  * Still dzpuis...
73  *
74  * Revision 1.7 2003/10/29 13:14:03 e_gourgoulhon
75  * Added integer argument to derivative functions dsdr, etc...
76  * so that one can choose the dzpuis of the result (default=2).
77  *
78  * Revision 1.6 2003/10/17 13:46:15 j_novak
79  * The argument is now between 1 and 3 (instead of 0->2)
80  *
81  * Revision 1.5 2003/10/15 16:03:38 j_novak
82  * Added the angular Laplace operator for Scalar.
83  *
84  * Revision 1.4 2003/10/15 10:43:58 e_gourgoulhon
85  * Added new methods dsdt and stdsdp.
86  *
87  * Revision 1.3 2003/10/11 14:43:29 e_gourgoulhon
88  * Changed name of local Cmp "deriv" to "derivee" (in order not
89  * to shadow the member deriv).
90  *
91  * Revision 1.2 2003/10/10 15:57:29 j_novak
92  * Added the state one (ETATUN) to the class Scalar
93  *
94  * Revision 1.1 2003/09/25 08:13:52 j_novak
95  * Added method for calculating derivatives
96  *
97  *
98  * $Header: /cvsroot/Lorene/C++/Source/Tensor/Scalar/scalar_deriv.C,v 1.22 2025/03/04 13:16:50 j_novak Exp $
99  *
100  */
101 
102 // Headers Lorene
103 #include "scalar.h"
104 #include "map.h"
105 #include "tensor.h"
106 
107  //---------------------//
108  // d/dr //
109  //---------------------//
110 
111 namespace Lorene {
112 const Scalar& Scalar::dsdr() const {
113 
114  // Protection
115  assert(etat != ETATNONDEF) ;
116 
117  // If the derivative has not been previously computed, the
118  // computation must be done by the appropriate routine of the mapping :
119 
120  if (p_dsdr == 0x0) {
121  p_dsdr = new Scalar(*mp) ;
122  if (etat == ETATUN) {
123  p_dsdr->set_etat_zero() ;
124  }
125  else {
126  mp->dsdr(*this, *p_dsdr) ;
127 
128  }
129  }
130 
131  int dzp = (dzpuis == 0) ? 2 : dzpuis+1 ;
132  if (mp->get_mg()->get_type_r(mp->get_mg()->get_nzone() - 1) != UNSURR)
133  dzp = 0 ;
134  p_dsdr->set_dzpuis(dzp) ;
135 
136  return *p_dsdr ;
137 
138 }
139 
140  //--------------------//
141  // 1/r d/dtheta //
142  //--------------------//
143 
144 const Scalar& Scalar::srdsdt() const {
145 
146  // Protection
147  assert(etat != ETATNONDEF) ;
148 
149  // If the derivative has not been previously computed, the
150  // computation must be done by the appropriate routine of the mapping :
151 
152  if (p_srdsdt == 0x0) {
153  p_srdsdt = new Scalar(*mp) ;
154  if (etat == ETATUN) {
156  }
157  else {
158  mp->srdsdt(*this, *p_srdsdt) ;
159  }
160  }
161 
162  int dzp = (dzpuis == 0) ? 2 : dzpuis+1 ;
163  if (mp->get_mg()->get_type_r(mp->get_mg()->get_nzone() - 1) != UNSURR)
164  dzp = 0 ;
165  p_srdsdt->set_dzpuis(dzp) ;
166 
167  return *p_srdsdt ;
168 
169 }
170 
171 
172  //------------------------------//
173  // 1/(r sin(theta)) d/dphi //
174  //------------------------------//
175 
176 const Scalar& Scalar::srstdsdp() const {
177 
178  // Protection
179  assert(etat != ETATNONDEF) ;
180 
181  // If the derivative has not been previously computed, the
182  // computation must be done by the appropriate routine of the mapping :
183 
184  if (p_srstdsdp == 0x0) {
185  p_srstdsdp = new Scalar(*mp) ;
186  if (etat == ETATUN) {
188  }
189  else {
190  mp->srstdsdp(*this, *p_srstdsdp) ;
191  }
192  }
193 
194  int dzp = (dzpuis == 0) ? 2 : dzpuis+1 ;
195  if (mp->get_mg()->get_type_r(mp->get_mg()->get_nzone() - 1) != UNSURR)
196  dzp = 0 ;
197  p_srstdsdp->set_dzpuis(dzp) ;
198 
199  return *p_srstdsdp ;
200 
201 }
202 
203  //--------------------//
204  // d/dtheta //
205  //--------------------//
206 
207 const Scalar& Scalar::dsdt() const {
208 
209  assert(etat != ETATNONDEF) ; // Protection
210 
211  // If the derivative has not been previously computed, the
212  // computation must be done by the appropriate routine of the mapping :
213 
214  if (p_dsdt == 0x0) {
215 
216  p_dsdt = new Scalar(*mp) ;
217 
218  if (etat == ETATUN) {
219  p_dsdt->set_etat_zero() ;
220  }
221  else {
222  mp->dsdt(*this, *p_dsdt) ;
223  }
224  }
225 
226 
228 
229  return *p_dsdt ;
230 
231 }
232 
233  //------------------------------//
234  // 1/sin(theta) d/dphi //
235  //------------------------------//
236 
237 const Scalar& Scalar::stdsdp() const {
238 
239  assert(etat != ETATNONDEF) ; // Protection
240 
241  // If the derivative has not been previously computed, the
242  // computation must be done by the appropriate routine of the mapping :
243 
244  if (p_stdsdp == 0x0) {
245 
246  p_stdsdp = new Scalar(*mp) ;
247 
248  if (etat == ETATUN) {
249  p_stdsdp->set_etat_zero() ;
250  }
251  else {
252  mp->stdsdp(*this, *p_stdsdp) ;
253  }
254  }
256 
257  return *p_stdsdp ;
258 
259 }
260 
261  //-----------------//
262  // d/dx //
263  //-----------------//
264 
265 const Scalar& Scalar::dsdx() const {
266 
267  // Protection
268  assert(etat != ETATNONDEF) ;
269 
270  // If the derivative has not been previously computed, the
271  // computation must be done by the appropriate routine of the mapping :
272 
273  if (p_dsdx == 0x0) {
274  p_dsdx = new Scalar(*mp) ;
275  if (etat == ETATUN) {
276  p_dsdx->set_etat_zero() ;
277  }
278  else {
280  }
281  }
282 
283  int dzp = (dzpuis == 0) ? 2 : dzpuis+1 ;
284  if (mp->get_mg()->get_type_r(mp->get_mg()->get_nzone() - 1) != UNSURR)
285  dzp = 0 ;
286  p_dsdx->set_dzpuis(dzp) ;
287 
288  return *p_dsdx ;
289 
290 }
291 
292  //-----------------//
293  // d/dy //
294  //-----------------//
295 
296 const Scalar& Scalar::dsdy() const {
297 
298  // Protection
299  assert(etat != ETATNONDEF) ;
300 
301  // If the derivative has not been previously computed, the
302  // computation must be done by the appropriate routine of the mapping :
303 
304  if (p_dsdy == 0x0) {
305  p_dsdy = new Scalar(*mp) ;
306  if (etat == ETATUN) {
307  p_dsdy->set_etat_zero() ;
308  }
309  else {
311  }
312  }
313 
314  int dzp = (dzpuis == 0) ? 2 : dzpuis+1 ;
315  if (mp->get_mg()->get_type_r(mp->get_mg()->get_nzone() - 1) != UNSURR)
316  dzp = 0 ;
317  p_dsdy->set_dzpuis(dzp) ;
318 
319  return *p_dsdy ;
320 
321 }
322 
323  //-----------------//
324  // d/dz //
325  //-----------------//
326 
327 const Scalar& Scalar::dsdz() const {
328 
329  // Protection
330  assert(etat != ETATNONDEF) ;
331 
332  // If the derivative has not been previously computed, the
333  // computation must be done by the appropriate routine of the mapping :
334 
335  if (p_dsdz == 0x0) {
336  p_dsdz = new Scalar(*mp) ;
337  if (etat == ETATUN) {
338  p_dsdz->set_etat_zero() ;
339  }
340  else {
342  }
343  }
344 
345  int dzp = (dzpuis == 0) ? 2 : dzpuis+1 ;
346  if (mp->get_mg()->get_type_r(mp->get_mg()->get_nzone() - 1) != UNSURR)
347  dzp = 0 ;
348  p_dsdz->set_dzpuis(dzp) ;
349 
350  return *p_dsdz ;
351 
352 }
353 
354  //-----------------//
355  // d/dx^i //
356  //-----------------//
357 
358 const Scalar& Scalar::deriv(int i) const {
359 
360  switch (i) {
361 
362  case 1 : {
363  return dsdx() ;
364  }
365 
366  case 2 : {
367  return dsdy() ;
368  }
369 
370  case 3 : {
371  return dsdz() ;
372  }
373 
374  default : {
375  cout << "Scalar::deriv : index i out of range !" << endl ;
376  cout << " i = " << i << endl ;
377  abort() ;
378  return dsdx() ; // Pour satisfaire le compilateur !
379  }
380 
381  }
382 
383 }
384 
385  //--------------------------//
386  // Covariant derivatives //
387  //--------------------------//
388 
389 const Vector& Scalar::derive_cov(const Metric& gam) const {
390 
391  const Vector* p_resu =
392  dynamic_cast<const Vector*>( &(Tensor::derive_cov(gam)) ) ;
393 
394  assert(p_resu != 0x0) ;
395 
396  return *p_resu ;
397 
398 }
399 
400 
401 const Vector& Scalar::derive_con(const Metric& gam) const {
402 
403  const Vector* p_resu =
404  dynamic_cast<const Vector*>( &(Tensor::derive_con(gam)) ) ;
405 
406  assert(p_resu != 0x0) ;
407 
408  return *p_resu ;
409 
410 }
411 
412 
413  //--------------------------//
414  // Lie derivative //
415  //--------------------------//
416 
417 
418 Scalar Scalar::derive_lie(const Vector& vv) const {
419 
420  Scalar resu(*mp) ;
421 
422  compute_derive_lie(vv, resu) ;
423 
424  return resu ;
425 
426 }
427 
428 
429 
430 
431  //---------------------//
432  // Laplacian //
433  //---------------------//
434 
435 const Scalar& Scalar::laplacian(int zec_mult_r) const {
436 
437  // Protection
438  assert(etat != ETATNONDEF) ;
439 
440  // If the Laplacian has not been previously computed, the
441  // computation must be done by the appropriate routine of the mapping :
442  if ( (p_lap == 0x0) || (zec_mult_r != ind_lap) ) {
443  if (p_lap != 0x0) {
444  delete p_lap ; // the Laplacian had been computed but with
445  // a different value of zec_mult_r
446  }
447  p_lap = new Scalar(*mp) ;
448  mp->laplacien(*this, zec_mult_r, *p_lap) ;
449  ind_lap = zec_mult_r ;
450  }
451 
452  return *p_lap ;
453 
454 }
455 
456  //-----------------------------//
457  // Angular Laplacian //
458  //-----------------------------//
459 
460 const Scalar& Scalar::lapang() const {
461 
462  // Protection
463  assert(etat != ETATNONDEF) ;
464 
465  // If the Laplacian has not been previously computed, the
466  // computation must be done by the appropriate routine of the mapping :
467  if ( p_lapang == 0x0 ) {
468  if (etat == ETATUN) {
469  p_lapang = new Scalar(*mp) ;
471  }
472  else {
473  p_lapang = new Scalar(*mp) ;
474  mp->lapang(*this, *p_lapang) ;
475  }
476  }
477 
479 
480  return *p_lapang ;
481 
482 }
483 
484 
485 
486  //---------------------//
487  // d/dradial //
488  //---------------------//
489 
490 const Scalar& Scalar::dsdradial() const {
491 
492  // Protection
493  assert(etat != ETATNONDEF) ;
494 
495  // If the derivative has not been previously computed, the
496  // computation must be done by the appropriate routine of the mapping :
497 
498  if (p_dsdradial == 0x0) {
499  p_dsdradial = new Scalar(*mp) ;
500  if (etat == ETATUN) {
502  }
503  else {
504  mp->dsdradial(*this, *p_dsdradial) ;
505  }
506  }
507 
508  int dzp = (dzpuis == 0) ? 2 : dzpuis+1 ;
509  if (mp->get_mg()->get_type_r(mp->get_mg()->get_nzone() - 1) != UNSURR)
510  dzp = 0 ;
511  p_dsdradial->set_dzpuis(dzp) ;
512 
513  return *p_dsdradial ;
514 
515 }
516 
517  //-----------------//
518  // d/drho //
519  //-----------------//
520 
521 const Scalar& Scalar::dsdrho() const {
522 
523  // Protection
524  assert(etat != ETATNONDEF) ;
525 
526  // If the derivative has not been previously computed, the
527  // computation must be done by the appropriate routine of the mapping :
528 
529  if (p_dsdrho == 0x0) {
530  p_dsdrho = new Scalar(*mp) ;
531  if (etat == ETATUN) {
533  }
534  else {
535  Scalar der_r (dsdr()) ;
536  Scalar der_t (srdsdt()) ;
537  Valeur val (der_r.get_spectral_va().mult_st() +
538  der_t.get_spectral_va().mult_ct()) ;
539 
540  Scalar res (*mp) ;
541  res = val ;
542 
543  *p_dsdrho = res ;
544  }
545  }
546 
547  int dzp = (dzpuis == 0) ? 2 : dzpuis+1 ;
548  if (mp->get_mg()->get_type_r(mp->get_mg()->get_nzone() - 1) != UNSURR)
549  dzp = 0 ;
550  p_dsdrho->set_dzpuis(dzp) ;
551 
552  return *p_dsdrho ;
553 
554 }
555 }
Scalar * p_srdsdt
Pointer on of *this (0x0 if not up to date)
Definition: scalar.h:428
Metric for tensor calculation.
Definition: metric.h:90
Scalar * p_srstdsdp
Pointer on of *this (0x0 if not up to date)
Definition: scalar.h:433
const Scalar & dsdradial() const
Returns of *this if the mapping is affine (class Map_af) and of *this if the mapping is logarithmic...
Definition: scalar_deriv.C:490
const Scalar & lapang() const
Returns the angular Laplacian of *this , where .
Definition: scalar_deriv.C:460
virtual void set_etat_zero()
Sets the logical state to ETATZERO (zero).
Definition: scalar.C:330
virtual void dsdt(const Scalar &uu, Scalar &resu) const =0
Computes of a Scalar .
Scalar(const Map &mpi)
Constructor from mapping.
Definition: scalar.C:210
Lorene prototypes.
Definition: app_hor.h:67
const Scalar & dsdt() const
Returns of *this .
Definition: scalar_deriv.C:207
const Mg3d * get_mg() const
Gives the Mg3d on which the mapping is defined.
Definition: map.h:792
const Scalar & laplacian(int ced_mult_r=4) const
Returns the Laplacian of *this.
Definition: scalar_deriv.C:435
virtual void dsdr(const Cmp &ci, Cmp &resu) const =0
Computes of a Cmp .
const Scalar & dsdz() const
Returns of *this , where .
Definition: scalar_deriv.C:327
Tensor field of valence 0 (or component of a tensorial field).
Definition: scalar.h:399
Scalar * p_dsdt
Pointer on of *this (0x0 if not up to date)
Definition: scalar.h:436
int ind_lap
Power of r by which the last computed Laplacian has been multiplied in the compactified external doma...
Definition: scalar.h:475
const Scalar & dsdx() const
Returns of *this , where .
Definition: scalar_deriv.C:265
Values and coefficients of a (real-value) function.
Definition: valeur.h:297
int dzpuis
Power of r by which the quantity represented by this must be divided in the compactified external do...
Definition: scalar.h:415
const Vector & derive_con(const Metric &gam) const
Returns the "contravariant" derivative of *this with respect to some metric , by raising the index of...
Definition: scalar_deriv.C:401
Tensor field of valence 1.
Definition: vector.h:188
virtual void comp_x_from_spherical(const Scalar &v_r, const Scalar &v_theta, const Scalar &v_phi, Scalar &v_x) const =0
Computes the Cartesian x component (with respect to bvect_cart ) of a vector given by its spherical c...
virtual void srdsdt(const Cmp &ci, Cmp &resu) const =0
Computes of a Cmp .
void set_dzpuis(int)
Modifies the dzpuis flag.
Definition: scalar.C:814
Scalar * p_lap
Pointer on the Laplacian of *this (0x0 if not up to date)
Definition: scalar.h:460
const Scalar & dsdrho() const
Returns of *this .
Definition: scalar_deriv.C:521
Scalar * p_dsdradial
Pointer on of *this.
Definition: scalar.h:467
virtual void comp_z_from_spherical(const Scalar &v_r, const Scalar &v_theta, Scalar &v_z) const =0
Computes the Cartesian z component (with respect to bvect_cart ) of a vector given by its spherical c...
void compute_derive_lie(const Vector &v, Tensor &resu) const
Computes the Lie derivative of this with respect to some vector field v (protected method; the public...
Scalar * p_dsdrho
Pointer on of *this.
Definition: scalar.h:470
const Scalar & dsdy() const
Returns of *this , where .
Definition: scalar_deriv.C:296
Scalar * p_dsdy
Pointer on of *this , where (0x0 if not up to date)
Definition: scalar.h:451
Scalar * p_lapang
Pointer on the Laplacian of *this (0x0 if not up to date)
Definition: scalar.h:464
virtual void srstdsdp(const Cmp &ci, Cmp &resu) const =0
Computes of a Cmp .
int get_nzone() const
Returns the number of domains.
Definition: grilles.h:467
const Valeur & mult_st() const
Returns applied to *this.
const Scalar & deriv(int i) const
Returns of *this , where .
Definition: scalar_deriv.C:358
const Scalar & stdsdp() const
Returns of *this .
Definition: scalar_deriv.C:237
const Tensor & derive_cov(const Metric &gam) const
Returns the covariant derivative of this with respect to some metric .
Definition: tensor.C:1012
Scalar derive_lie(const Vector &v) const
Computes the derivative of this along a vector field v.
Definition: scalar_deriv.C:418
const Tensor & derive_con(const Metric &gam) const
Returns the "contravariant" derivative of this with respect to some metric , by raising the last inde...
Definition: tensor.C:1024
Scalar * p_dsdz
Pointer on of *this , where (0x0 if not up to date)
Definition: scalar.h:456
const Scalar & srdsdt() const
Returns of *this .
Definition: scalar_deriv.C:144
int etat
The logical state ETATNONDEF (undefined), ETATZERO (null), ETATUN (one), or ETATQCQ (ordinary)...
Definition: scalar.h:408
Scalar * p_stdsdp
Pointer on of *this (0x0 if not up to date)
Definition: scalar.h:441
const Scalar & dsdr() const
Returns of *this .
Definition: scalar_deriv.C:112
const Valeur & mult_ct() const
Returns applied to *this.
Scalar * p_dsdr
Pointer on of *this (0x0 if not up to date)
Definition: scalar.h:423
virtual void dsdradial(const Scalar &uu, Scalar &resu) const =0
Computes of a Scalar if the description is affine and if it is logarithmic.
int get_type_r(int l) const
Returns the type of sampling in the radial direction in domain no.
Definition: grilles.h:493
const Map *const mp
Mapping on which the numerical values at the grid points are defined.
Definition: tensor.h:307
const Vector & derive_cov(const Metric &gam) const
Returns the gradient (1-form = covariant vector) of *this
Definition: scalar_deriv.C:389
virtual void comp_y_from_spherical(const Scalar &v_r, const Scalar &v_theta, const Scalar &v_phi, Scalar &v_y) const =0
Computes the Cartesian y component (with respect to bvect_cart ) of a vector given by its spherical c...
const Valeur & get_spectral_va() const
Returns va (read only version)
Definition: scalar.h:613
const Scalar & srstdsdp() const
Returns of *this .
Definition: scalar_deriv.C:176
virtual void laplacien(const Scalar &uu, int zec_mult_r, Scalar &lap) const =0
Computes the Laplacian of a scalar field.
virtual void lapang(const Scalar &uu, Scalar &lap) const =0
Computes the angular Laplacian of a scalar field.
Scalar * p_dsdx
Pointer on of *this , where (0x0 if not up to date)
Definition: scalar.h:446
virtual void stdsdp(const Scalar &uu, Scalar &resu) const =0
Computes of a Scalar .