Lorene::Cmp Class Reference
[Old tensorial fields ( Deprecated)]

Component of a tensorial field *** DEPRECATED : use class Scalar instead ***. More...

#include <cmp.h>

List of all members.

Public Member Functions

 Cmp (const Map &map)
 Constructor from mapping.
 Cmp (const Map *p_map)
 Constructor from mapping.
 Cmp (const Cmp &a)
 Copy constructor.
 Cmp (const Map &, const Mg3d &, FILE *)
 Constructor from a file (see sauve(FILE*) ).
 ~Cmp ()
 Destructor.
void operator= (const Cmp &a)
 Assignment to another Cmp defined on the same mapping.
void operator= (const Valeur &a)
 Assignment to a Valeur.
void operator= (const Mtbl &a)
 Assignment to a Mtbl.
void operator= (double)
 Assignment to a double.
void operator= (int)
 Assignment to an int.
void import (const Cmp &ci)
 Assignment to another Cmp defined on a different mapping.
void import_symy (const Cmp &ci)
 Assignment to another Cmp defined on a different mapping.
void import_asymy (const Cmp &ci)
 Assignment to another Cmp defined on a different mapping.
void import (int nzet, const Cmp &ci)
 Assignment to another Cmp defined on a different mapping.
void import_symy (int nzet, const Cmp &ci)
 Assignment to another Cmp defined on a different mapping.
void import_asymy (int nzet, const Cmp &ci)
 Assignment to another Cmp defined on a different mapping.
Tblset (int l)
 Read/write of the value in a given domain.
const Tbloperator() (int l) const
 Read-only of the value in a given domain.
double & set (int l, int k, int j, int i)
 Read/write of a particular element.
double operator() (int l, int k, int j, int i) const
 Read-only of a particular element.
double val_point (double r, double theta, double phi) const
 Computes the value of the field represented by *this at an arbitrary point $(r, \theta, \phi)$, by means of the spectral expansion.
void set_etat_nondef ()
 Sets the logical state to ETATNONDEF (undefined).
void set_etat_zero ()
 Sets the logical state to ETATZERO (zero).
void set_etat_qcq ()
 Sets the logical state to ETATQCQ (ordinary state).
void allocate_all ()
 Sets the logical state to ETATQCQ (ordinary state) and performs the memory allocation of all the elements, down to the double arrays of the Tbl s.
void annule_hard ()
 Sets the Cmp to zero in a hard way.
void annule (int l)
 Sets the Cmp to zero in a given domain.
void annule (int l_min, int l_max)
 Sets the Cmp to zero in several domains.
void filtre (int n)
 Sets the n lasts coefficients in r to 0 in the external domain.
void filtre_phi (int n, int zone)
 Sets the n lasts coefficients in $\Phi$ to 0 in the domain zone .
void set_val_inf (double val)
 Sets the value of the Cmp to val at infinity.
void set_val_hor (double val, int zone)
 Sets the value of the Cmp to val on the inner boudary of the shell number zone .This is usefull for dealing with undefined values.
void fixe_decroissance (int puis)
 Substracts all the components behaving like $r^{-n}$ in the external domain, with n strictly lower than puis , so that *this decreases at least like $r^{\tt puis} $ at infinity.
Tbl multipole_spectrum ()
 Gives the spectrum in terms of multipolar modes l .
int get_etat () const
 Returns the logical state.
const Mapget_mp () const
 Returns the mapping.
int get_dzpuis () const
 Returns dzpuis.
bool dz_nonzero () const
 Returns true if the last domain is compactified and *this is not zero in this domain.
bool check_dzpuis (int dzi) const
 Returns false if the last domain is compactified and *this is not zero in this domain and dzpuis is not equal to dzi , otherwise return true.
void sauve (FILE *) const
 Save in a file.
void affiche_seuil (ostream &ostr, int type=0, int precision=4, double threshold=1.e-7) const
 Prints only the values greater than a given threshold.
void operator+= (const Cmp &)
 += Cmp
void operator-= (const Cmp &)
 -= Cmp
void operator*= (const Cmp &)
 *= Cmp
void std_base_scal ()
 Sets the spectral bases of the Valeur va to the standard ones for a scalar.
const Cmpdsdr () const
 Returns $\partial / \partial r$ of *this .
const Cmpsrdsdt () const
 Returns $1/r \partial / \partial \theta$ of *this .
const Cmpsrstdsdp () const
 Returns $1/(r\sin\theta) \partial / \partial \phi$ of *this .
const Cmpdsdx () const
 Returns $\partial/\partial x$ of *this , where $x=r\sin\theta \cos\phi$.
const Cmpdsdy () const
 Returns $\partial/\partial y$ of *this , where $y=r\sin\theta \sin\phi$.
const Cmpdsdz () const
 Returns $\partial/\partial z$ of *this , where $z=r\cos\theta$.
const Cmpderiv (int i) const
 Returns $\partial/\partial x_i$ of *this , where $x_i = (x, y, z)$.
const Cmplaplacien (int zec_mult_r=4) const
 Returns the Laplacian of *this.
void div_r ()
 Division by r everywhere.
void mult_r ()
 Multiplication by r everywhere.
void mult_r_zec ()
 Multiplication by r in the external compactified domain (ZEC).
void mult_rsint ()
 Multiplication by $r\sin\theta$.
void mult_cost ()
 Multiplication by $.
void div_rsint ()
 Division by $r\sin\theta$.
void dec_dzpuis ()
 Decreases by 1 the value of dzpuis and changes accordingly the values of the Cmp in the external compactified domain (ZEC).
void inc_dzpuis ()
 Increases by the value of dzpuis and changes accordingly the values of the Cmp in the external compactified domain (ZEC).
void dec2_dzpuis ()
 Decreases by 2 the value of dzpuis and changes accordingly the values of the Cmp in the external compactified domain (ZEC).
void inc2_dzpuis ()
 Increases by 2 the value of dzpuis and changes accordingly the values of the Cmp in the external compactified domain (ZEC).
void set_dzpuis (int)
 Set a value to dzpuis.
double integrale () const
 Computes the integral over all space of *this .
const Tblintegrale_domains () const
 Computes the integral in each domain of *this .
Valeur ** asymptot (int n, const int flag=0) const
 Asymptotic expansion at r = infinity.
Cmp poisson () const
 Solves the scalar Poisson equation with *this as a source.
Cmp poisson_tau () const
 Same as Poisson with a Tau method.
Cmp poisson_falloff (int k_falloff) const
Cmp poisson_ylm (int nylm, double *intvec) const
void poisson (Param &par, Cmp &uu) const
 Solves the scalar Poisson equation with *this as a source (version with parameters to control the resolution).
void poisson_tau (Param &par, Cmp &uu) const
 Same as Poisson with a Tau method.
void poisson_falloff (Param &par, Cmp &uu, int k_falloff) const
void poisson_ylm (Param &par, Cmp &uu, int nylm, double *intvec) const
Cmp poisson_dirichlet (const Valeur &limite, int num) const
 Is identicall to Cmp::poisson() .
Cmp poisson_neumann (const Valeur &, int) const
 Idem as Cmp::poisson_dirichlet , the boundary condition being on the radial derivative of the solution.
Cmp poisson_neumann_interne (const Valeur &, Param &par, Cmp &resu) const
 Idem as Cmp::poisson_neumann , the boundary condition is on the radial derivative of the solution.
Cmp poisson_frontiere_double (const Valeur &, const Valeur &, int) const
void poisson_regular (int k_div, int nzet, double unsgam1, Param &par, Cmp &uu, Cmp &uu_regu, Cmp &uu_div, Tenseur &duu_div, Cmp &source_regu, Cmp &source_div) const
 Solves the scalar Poisson equation with *this as a source (version with parameters to control the resolution).
Tbl test_poisson (const Cmp &uu, ostream &ostr, bool detail=false) const
 Checks if a Poisson equation with *this as a source has been correctly solved.
void raccord (int n)
 Performs the $C^n$ matching of the nucleus with respect to the first shell.
void raccord_c1_zec (int puis, int nbre, int lmax)
 Performs the $C^1$ matching of the external domain with respect to the last shell using function like $\frac{1}{r^i}$ with ${\tt puis} \leq i \leq {\tt puis+nbre}$ for each spherical harmonics with $l \leq {\tt lmax}$.
void raccord_externe (int puis, int nbre, int lmax)
 Matching of the external domain with the outermost shell.

Public Attributes

Valeur va
 The numerical value of the Cmp.

Private Member Functions

void import_gal (int nzet, const Cmp &ci)
 Assignment to another Cmp defined on a different mapping, when the two mappings do not have a particular relative orientation.
void import_align (int nzet, const Cmp &ci)
 Assignment to another Cmp defined on a different mapping, when the two mappings have aligned Cartesian axis.
void import_anti (int nzet, const Cmp &ci)
 Assignment to another Cmp defined on a different mapping, when the two mappings have anti-aligned Cartesian axis (i.e.
void import_align_symy (int nzet, const Cmp &ci)
 Assignment to another Cmp defined on a different mapping, when the two mappings have aligned Cartesian axis.
void import_anti_symy (int nzet, const Cmp &ci)
 Assignment to another Cmp defined on a different mapping, when the two mappings have anti-aligned Cartesian axis (i.e.
void import_align_asymy (int nzet, const Cmp &ci)
 Assignment to another Cmp defined on a different mapping, when the two mappings have aligned Cartesian axis.
void import_anti_asymy (int nzet, const Cmp &ci)
 Assignment to another Cmp defined on a different mapping, when the two mappings have anti-aligned Cartesian axis (i.e.
void del_t ()
 Logical destructor.
void del_deriv ()
 Logical destructor of the derivatives.
void set_der_0x0 ()
 Sets the pointers for derivatives to 0x0.

Private Attributes

const Mapmp
 Reference mapping.
int etat
 Logical state (ETATNONDEF , ETATQCQ or ETATZERO ).
int dzpuis
 Power of r by which the quantity represented by this must be divided in the external compactified zone in order to get the correct physical values.
Cmpp_dsdr
 Pointer on $\partial/\partial r$ of *this.
Cmpp_srdsdt
 Pointer on $1/r \partial/\partial \theta$ of *this.
Cmpp_srstdsdp
 Pointer on $1/(r\sin\theta) \partial/\partial \phi$ of *this.
Cmpp_dsdx
 Pointer on $\partial/\partial x$ of *this , where $x=r\sin\theta \cos\phi$.
Cmpp_dsdy
 Pointer on $\partial/\partial y$ of *this , where $y=r\sin\theta \sin\phi$.
Cmpp_dsdz
 Pointer on $\partial/\partial z$ of *this , where $z=r\cos\theta$.
Cmpp_lap
 Pointer on the Laplacian of *this.
int ind_lap
 Power of r by which the last computed Laplacian has been multiplied in the external compactified domain.
Tblp_integ
 Pointer on the space integral of *this (values in each domain).

Friends

ostream & operator<< (ostream &, const Cmp &)
 Display.

Detailed Description

Component of a tensorial field *** DEPRECATED : use class Scalar instead ***.

()

Definition at line 446 of file cmp.h.


Constructor & Destructor Documentation

Lorene::Cmp::Cmp ( const Map map  )  [explicit]

Constructor from mapping.

Definition at line 211 of file cmp.C.

References set_der_0x0().

Lorene::Cmp::Cmp ( const Map p_map  )  [explicit]

Constructor from mapping.

Definition at line 218 of file cmp.C.

References set_der_0x0().

Lorene::Cmp::Cmp ( const Cmp a  ) 

Copy constructor.

Definition at line 228 of file cmp.C.

References set_der_0x0().

Lorene::Cmp::Cmp ( const Map mpi,
const Mg3d mgi,
FILE *  fd 
)

Constructor from a file (see sauve(FILE*) ).

Definition at line 237 of file cmp.C.

References dzpuis, etat, Lorene::fread_be(), Lorene::Map::get_mg(), and set_der_0x0().

Lorene::Cmp::~Cmp (  ) 

Destructor.

Definition at line 253 of file cmp.C.

References del_t().


Member Function Documentation

void Lorene::Cmp::affiche_seuil ( ostream &  ostr,
int  type = 0,
int  precision = 4,
double  threshold = 1.e-7 
) const

Prints only the values greater than a given threshold.

Parameters:
ostr [input] Output stream used for the printing
type [input] Type of display : 0 = prints only the coefficients, 1 = prints only the values in configuration space, 2 = prints both
precision [input] Number of printed digits (default: 4)
threshold [input] Value above which an array element is printed (default: 1.e-7)

Definition at line 615 of file cmp.C.

References Lorene::Valeur::affiche_seuil(), dzpuis, etat, and va.

void Lorene::Cmp::allocate_all (  ) 

Sets the logical state to ETATQCQ (ordinary state) and performs the memory allocation of all the elements, down to the double arrays of the Tbl s.

This function performs in fact recursive calls to set_etat_qcq() on each element of the chain Cmp -> Valeur -> Mtbl -> Tbl .

Definition at line 326 of file cmp.C.

References Lorene::Valeur::c, Lorene::Mtbl::get_nzone(), Lorene::Valeur::set_etat_c_qcq(), Lorene::Tbl::set_etat_qcq(), Lorene::Mtbl::set_etat_qcq(), set_etat_qcq(), Lorene::Mtbl::t, and va.

void Lorene::Cmp::annule ( int  l_min,
int  l_max 
)

Sets the Cmp to zero in several domains.

Parameters:
l_min [input] The Cmp will be set (logically) to zero in the domains whose indices are in the range [l_min,l_max].
l_max [input] see the comments for l_min .

Note that annule(0,va.mg->get_nzone()-1) is equivalent to set_etat_zero() .

Definition at line 360 of file cmp.C.

References annule(), Lorene::Valeur::annule(), etat, Lorene::Mg3d::get_nzone(), Lorene::Valeur::mg, p_dsdr, p_dsdx, p_dsdy, p_dsdz, p_integ, p_lap, p_srdsdt, p_srstdsdp, set_etat_zero(), and va.

void Lorene::Cmp::annule ( int  l  ) 

Sets the Cmp to zero in a given domain.

Parameters:
l [input] Index of the domain in which the Cmp will be set (logically) to zero.

Definition at line 351 of file cmp.C.

void Lorene::Cmp::annule_hard (  ) 

Sets the Cmp to zero in a hard way.

1/ Sets the logical state to ETATQCQ , i.e. to an ordinary state. 2/ Fills the Valeur va with zeros. NB: this function must be used for debugging purposes only. For other operations, the functions set_etat_zero() or annule(int, int) must be perferred.

Definition at line 341 of file cmp.C.

References Lorene::Valeur::annule_hard(), del_deriv(), etat, and va.

Valeur ** Lorene::Cmp::asymptot ( int  n,
const int  flag = 0 
) const

Asymptotic expansion at r = infinity.

Determines the coefficients $a_k(\theta, \phi)$ of the expansion

\[ \sum_{k=0}^n {a_k(\theta, \phi) \over r^k} \]

of *this when $r \rightarrow \infty$.

Parameters:
n order of the expansion
flag : output
Returns:
Array of n+1 Valeur s on mg->angu describing the coefficients $a_k(\theta, \phi)$. This array is allocated by the routine.

Definition at line 74 of file cmp_asymptot.C.

References Lorene::Valeur::base, Lorene::Valeur::c, dzpuis, Lorene::Mg3d::get_angu(), Lorene::Map::get_mg(), Lorene::Mg3d::get_np(), Lorene::Mg3d::get_nr(), Lorene::Mg3d::get_nt(), Lorene::Mg3d::get_nzone(), Lorene::Mg3d::get_type_r(), mp, mult_r_zec(), set(), Lorene::Valeur::set(), Lorene::Valeur::set_base(), Lorene::Valeur::set_etat_c_qcq(), Lorene::Tbl::set_etat_qcq(), Lorene::Mtbl::set_etat_qcq(), Lorene::Tbl::set_etat_zero(), Lorene::Valeur::set_etat_zero(), Lorene::Mtbl::t, and va.

bool Lorene::Cmp::check_dzpuis ( int  dzi  )  const

Returns false if the last domain is compactified and *this is not zero in this domain and dzpuis is not equal to dzi , otherwise return true.

Definition at line 718 of file cmp.C.

References dz_nonzero(), and dzpuis.

void Lorene::Cmp::dec2_dzpuis (  ) 

Decreases by 2 the value of dzpuis and changes accordingly the values of the Cmp in the external compactified domain (ZEC).

Definition at line 183 of file cmp_r_manip.C.

References Lorene::Map::dec2_dzpuis(), mp, and operator=().

void Lorene::Cmp::dec_dzpuis (  ) 

Decreases by 1 the value of dzpuis and changes accordingly the values of the Cmp in the external compactified domain (ZEC).

Definition at line 157 of file cmp_r_manip.C.

References Lorene::Map::dec_dzpuis(), mp, and operator=().

void Lorene::Cmp::del_deriv (  )  [private]

Logical destructor of the derivatives.

Definition at line 268 of file cmp.C.

References p_dsdr, p_dsdx, p_dsdy, p_dsdz, p_integ, p_lap, p_srdsdt, and p_srstdsdp.

void Lorene::Cmp::del_t (  )  [private]

Logical destructor.

Definition at line 262 of file cmp.C.

References del_deriv(), Lorene::Valeur::del_t(), etat, and va.

const Cmp & Lorene::Cmp::deriv ( int  i  )  const

Returns $\partial/\partial x_i$ of *this , where $x_i = (x, y, z)$.

Note that in the external compactified domain (ZEC), it returns instead $r^2 \partial/ \partial x_i$.

Parameters:
i [input] i=0 for x , i=1 for y , i=2 for z .

Definition at line 214 of file cmp_deriv.C.

References dsdx(), dsdy(), and dsdz().

void Lorene::Cmp::div_r (  ) 

Division by r everywhere.

Definition at line 81 of file cmp_r_manip.C.

References Cmp(), del_deriv(), Lorene::Map::div_r(), mp, and operator=().

void Lorene::Cmp::div_rsint (  ) 

Division by $r\sin\theta$.

Definition at line 144 of file cmp_r_manip.C.

References del_deriv(), Lorene::Map::div_rsint(), mp, and operator=().

const Cmp & Lorene::Cmp::dsdr (  )  const

Returns $\partial / \partial r$ of *this .

Note that in the external compactified domain (ZEC), it returns instead $r^2 \partial/ \partial r$.

Definition at line 87 of file cmp_deriv.C.

References Cmp(), Lorene::Map::dsdr(), etat, mp, and p_dsdr.

const Cmp & Lorene::Cmp::dsdx (  )  const

Returns $\partial/\partial x$ of *this , where $x=r\sin\theta \cos\phi$.

Note that in the external compactified domain (ZEC), it returns instead $r^2 \partial/ \partial x$.

Definition at line 151 of file cmp_deriv.C.

References Cmp(), Lorene::Map::comp_x_from_spherical(), dsdr(), etat, mp, p_dsdx, srdsdt(), and srstdsdp().

const Cmp & Lorene::Cmp::dsdy (  )  const

Returns $\partial/\partial y$ of *this , where $y=r\sin\theta \sin\phi$.

Note that in the external compactified domain (ZEC), it returns instead $r^2 \partial/ \partial y$.

Definition at line 172 of file cmp_deriv.C.

References Cmp(), Lorene::Map::comp_y_from_spherical(), dsdr(), etat, mp, p_dsdy, srdsdt(), and srstdsdp().

const Cmp & Lorene::Cmp::dsdz (  )  const

Returns $\partial/\partial z$ of *this , where $z=r\cos\theta$.

Note that in the external compactified domain (ZEC), it returns instead $r^2 \partial/ \partial z$.

Definition at line 193 of file cmp_deriv.C.

References Cmp(), Lorene::Map::comp_z_from_spherical(), dsdr(), etat, mp, p_dsdz, and srdsdt().

bool Lorene::Cmp::dz_nonzero (  )  const

Returns true if the last domain is compactified and *this is not zero in this domain.

Definition at line 663 of file cmp.C.

References Lorene::Valeur::c, Lorene::Valeur::c_cf, Lorene::Valeur::etat, etat, Lorene::Map::get_mg(), Lorene::Mg3d::get_nzone(), Lorene::Mg3d::get_type_r(), mp, and va.

void Lorene::Cmp::filtre ( int  n  ) 
void Lorene::Cmp::filtre_phi ( int  n,
int  zone 
)
void Lorene::Cmp::fixe_decroissance ( int  puis  ) 

Substracts all the components behaving like $r^{-n}$ in the external domain, with n strictly lower than puis , so that *this decreases at least like $r^{\tt puis} $ at infinity.

Definition at line 189 of file cmp_manip.C.

References Lorene::Valeur::base, Lorene::Valeur::c_cf, Lorene::Valeur::coef(), Lorene::cos(), dzpuis, Lorene::Map_af::get_alpha(), Lorene::Base_val::get_base_r(), Lorene::Map::get_mg(), Lorene::Mg3d::get_np(), Lorene::Mg3d::get_nr(), Lorene::Mg3d::get_nt(), Lorene::Mg3d::get_nzone(), mp, mult_r_zec(), Lorene::pow(), R_CHEBU, Lorene::Mtbl_cf::set(), Lorene::Valeur::set_etat_cf_qcq(), and va.

int Lorene::Cmp::get_dzpuis (  )  const [inline]

Returns dzpuis.

Definition at line 903 of file cmp.h.

References dzpuis.

int Lorene::Cmp::get_etat (  )  const [inline]

Returns the logical state.

Definition at line 899 of file cmp.h.

References etat.

const Map* Lorene::Cmp::get_mp (  )  const [inline]

Returns the mapping.

Definition at line 901 of file cmp.h.

References mp.

void Lorene::Cmp::import ( int  nzet,
const Cmp ci 
)

Assignment to another Cmp defined on a different mapping.

This assignment is performed point to point by means of the spectral expansion of the original Cmp .

Parameters:
nzet [input] Number of domains of the destination mapping (i.e. this->mp ) where the importation is performed: the assignment is done for the domains whose indices are between 0 and nzet-1 . In the other domains, *this is set to zero.
ci [input] Cmp to be imported.

Definition at line 88 of file cmp_import.C.

References Lorene::Map::get_bvect_cart(), import_align(), import_anti(), import_gal(), and mp.

void Lorene::Cmp::import ( const Cmp ci  ) 

Assignment to another Cmp defined on a different mapping.

This assignment is performed point to point by means of the spectral expansion of the original Cmp .

Parameters:
ci [input] Cmp to be imported.

Definition at line 76 of file cmp_import.C.

References Lorene::Map::get_mg(), Lorene::Mg3d::get_nzone(), and mp.

void Lorene::Cmp::import_align ( int  nzet,
const Cmp ci 
) [private]

Assignment to another Cmp defined on a different mapping, when the two mappings have aligned Cartesian axis.

This assignment is performed point to point by means of the spectral expansion of the original Cmp .

Parameters:
nzet [input] Number of domains of the destination mapping (i.e. this->mp ) where the importation is performed: the assignment is done for the domains whose indices are between 0 and nzet-1 . In the other domains, *this is set to zero.
ci [input] Cmp to be imported.

Definition at line 530 of file cmp_import.C.

References Lorene::Param::add_double(), Lorene::Param::add_int(), Lorene::Param::add_int_mod(), annule(), Lorene::Valeur::c, Lorene::Valeur::c_cf, Lorene::Valeur::coef(), del_t(), dzpuis, etat, Lorene::Map::get_bvect_cart(), Lorene::Map::get_mg(), Lorene::Mg3d::get_np(), Lorene::Mg3d::get_nr(), Lorene::Mg3d::get_nt(), Lorene::Mg3d::get_nzone(), Lorene::Map::get_ori_x(), Lorene::Map::get_ori_y(), Lorene::Map::get_ori_z(), mp, Lorene::Map::phi, Lorene::Map::r, set_dzpuis(), Lorene::Valeur::set_etat_c_qcq(), Lorene::Mtbl::set_etat_qcq(), set_etat_qcq(), set_etat_zero(), Lorene::sqrt(), Lorene::Tbl::t, Lorene::Mtbl::t, Lorene::Map::tet, va, Lorene::Map::val_lx(), Lorene::Mtbl_cf::val_point(), Lorene::Map::x, Lorene::Map::y, and Lorene::Map::z.

void Lorene::Cmp::import_align_asymy ( int  nzet,
const Cmp ci 
) [private]

Assignment to another Cmp defined on a different mapping, when the two mappings have aligned Cartesian axis.

Case where the Cmp is antisymmetric with respect to the plane y=0.

This assignment is performed point to point by means of the spectral expansion of the original Cmp .

Parameters:
nzet [input] Number of domains of the destination mapping (i.e. this->mp ) where the importation is performed: the assignment is done for the domains whose indices are between 0 and nzet-1 . In the other domains, *this is set to zero.
ci [input] Cmp to be imported.

Definition at line 372 of file cmp_import_asymy.C.

References Lorene::Param::add_double(), Lorene::Param::add_int(), Lorene::Param::add_int_mod(), annule(), Lorene::Valeur::c, Lorene::Valeur::c_cf, Lorene::Valeur::coef(), del_t(), dzpuis, etat, Lorene::Map::get_bvect_cart(), Lorene::Map::get_mg(), Lorene::Mg3d::get_np(), Lorene::Mg3d::get_nr(), Lorene::Mg3d::get_nt(), Lorene::Mg3d::get_nzone(), Lorene::Map::get_ori_x(), Lorene::Map::get_ori_y(), Lorene::Map::get_ori_z(), Lorene::Mg3d::get_type_p(), mp, Lorene::Map::phi, Lorene::Map::r, set_dzpuis(), Lorene::Valeur::set_etat_c_qcq(), Lorene::Mtbl::set_etat_qcq(), set_etat_qcq(), set_etat_zero(), Lorene::sqrt(), Lorene::Tbl::t, Lorene::Mtbl::t, Lorene::Map::tet, va, Lorene::Map::val_lx(), Lorene::Mtbl_cf::val_point_asymy(), Lorene::Map::x, Lorene::Map::y, and Lorene::Map::z.

void Lorene::Cmp::import_align_symy ( int  nzet,
const Cmp ci 
) [private]

Assignment to another Cmp defined on a different mapping, when the two mappings have aligned Cartesian axis.

Case where the Cmp is symmetric with respect to the plane y=0.

This assignment is performed point to point by means of the spectral expansion of the original Cmp .

Parameters:
nzet [input] Number of domains of the destination mapping (i.e. this->mp ) where the importation is performed: the assignment is done for the domains whose indices are between 0 and nzet-1 . In the other domains, *this is set to zero.
ci [input] Cmp to be imported.

Definition at line 343 of file cmp_import_symy.C.

References Lorene::Param::add_double(), Lorene::Param::add_int(), Lorene::Param::add_int_mod(), annule(), Lorene::Valeur::c, Lorene::Valeur::c_cf, Lorene::Valeur::coef(), del_t(), dzpuis, etat, Lorene::Map::get_bvect_cart(), Lorene::Map::get_mg(), Lorene::Mg3d::get_np(), Lorene::Mg3d::get_nr(), Lorene::Mg3d::get_nt(), Lorene::Mg3d::get_nzone(), Lorene::Map::get_ori_x(), Lorene::Map::get_ori_y(), Lorene::Map::get_ori_z(), Lorene::Mg3d::get_type_p(), mp, Lorene::Map::phi, Lorene::Map::r, set_dzpuis(), Lorene::Valeur::set_etat_c_qcq(), Lorene::Mtbl::set_etat_qcq(), set_etat_qcq(), set_etat_zero(), Lorene::sqrt(), Lorene::Tbl::t, Lorene::Mtbl::t, Lorene::Map::tet, va, Lorene::Map::val_lx(), Lorene::Mtbl_cf::val_point_symy(), Lorene::Map::x, Lorene::Map::y, and Lorene::Map::z.

void Lorene::Cmp::import_anti ( int  nzet,
const Cmp ci 
) [private]

Assignment to another Cmp defined on a different mapping, when the two mappings have anti-aligned Cartesian axis (i.e.

$x_1 = - x_2$, $y_1 = - y_2$, $z_1 = z_2$).

This assignment is performed point to point by means of the spectral expansion of the original Cmp .

Parameters:
nzet [input] Number of domains of the destination mapping (i.e. this->mp ) where the importation is performed: the assignment is done for the domains whose indices are between 0 and nzet-1 . In the other domains, *this is set to zero.
ci [input] Cmp to be imported.

Definition at line 338 of file cmp_import.C.

References Lorene::Param::add_double(), Lorene::Param::add_int(), Lorene::Param::add_int_mod(), annule(), Lorene::Valeur::c, Lorene::Valeur::c_cf, Lorene::Valeur::coef(), del_t(), dzpuis, etat, Lorene::Map::get_bvect_cart(), Lorene::Map::get_mg(), Lorene::Mg3d::get_np(), Lorene::Mg3d::get_nr(), Lorene::Mg3d::get_nt(), Lorene::Mg3d::get_nzone(), Lorene::Map::get_ori_x(), Lorene::Map::get_ori_y(), Lorene::Map::get_ori_z(), mp, Lorene::Map::phi, Lorene::Map::r, set_dzpuis(), Lorene::Valeur::set_etat_c_qcq(), Lorene::Mtbl::set_etat_qcq(), set_etat_qcq(), set_etat_zero(), Lorene::sqrt(), Lorene::Tbl::t, Lorene::Mtbl::t, Lorene::Map::tet, va, Lorene::Map::val_lx(), Lorene::Mtbl_cf::val_point(), Lorene::Map::x, Lorene::Map::y, and Lorene::Map::z.

void Lorene::Cmp::import_anti_asymy ( int  nzet,
const Cmp ci 
) [private]

Assignment to another Cmp defined on a different mapping, when the two mappings have anti-aligned Cartesian axis (i.e.

$x_1 = - x_2$, $y_1 = - y_2$, $z_1 = z_2$). Case where the Cmp is antisymmetric with respect to the plane y=0.

This assignment is performed point to point by means of the spectral expansion of the original Cmp .

Parameters:
nzet [input] Number of domains of the destination mapping (i.e. this->mp ) where the importation is performed: the assignment is done for the domains whose indices are between 0 and nzet-1 . In the other domains, *this is set to zero.
ci [input] Cmp to be imported.

Definition at line 129 of file cmp_import_asymy.C.

References Lorene::Param::add_double(), Lorene::Param::add_int(), Lorene::Param::add_int_mod(), annule(), Lorene::Valeur::c, Lorene::Valeur::c_cf, Lorene::Valeur::coef(), del_t(), dzpuis, etat, Lorene::Map::get_bvect_cart(), Lorene::Map::get_mg(), Lorene::Mg3d::get_np(), Lorene::Mg3d::get_nr(), Lorene::Mg3d::get_nt(), Lorene::Mg3d::get_nzone(), Lorene::Map::get_ori_x(), Lorene::Map::get_ori_y(), Lorene::Map::get_ori_z(), Lorene::Mg3d::get_type_p(), mp, Lorene::Map::phi, Lorene::Map::r, set_dzpuis(), Lorene::Valeur::set_etat_c_qcq(), Lorene::Mtbl::set_etat_qcq(), set_etat_qcq(), set_etat_zero(), Lorene::sqrt(), Lorene::Tbl::t, Lorene::Mtbl::t, Lorene::Map::tet, va, Lorene::Map::val_lx(), Lorene::Mtbl_cf::val_point_asymy(), Lorene::Map::x, Lorene::Map::y, and Lorene::Map::z.

void Lorene::Cmp::import_anti_symy ( int  nzet,
const Cmp ci 
) [private]

Assignment to another Cmp defined on a different mapping, when the two mappings have anti-aligned Cartesian axis (i.e.

$x_1 = - x_2$, $y_1 = - y_2$, $z_1 = z_2$). Case where the Cmp is symmetric with respect to the plane y=0.

This assignment is performed point to point by means of the spectral expansion of the original Cmp .

Parameters:
nzet [input] Number of domains of the destination mapping (i.e. this->mp ) where the importation is performed: the assignment is done for the domains whose indices are between 0 and nzet-1 . In the other domains, *this is set to zero.
ci [input] Cmp to be imported.

Definition at line 129 of file cmp_import_symy.C.

References Lorene::Param::add_double(), Lorene::Param::add_int(), Lorene::Param::add_int_mod(), annule(), Lorene::Valeur::c, Lorene::Valeur::c_cf, Lorene::Valeur::coef(), del_t(), dzpuis, etat, Lorene::Map::get_bvect_cart(), Lorene::Map::get_mg(), Lorene::Mg3d::get_np(), Lorene::Mg3d::get_nr(), Lorene::Mg3d::get_nt(), Lorene::Mg3d::get_nzone(), Lorene::Map::get_ori_x(), Lorene::Map::get_ori_y(), Lorene::Map::get_ori_z(), Lorene::Mg3d::get_type_p(), mp, Lorene::Map::phi, Lorene::Map::r, set_dzpuis(), Lorene::Valeur::set_etat_c_qcq(), Lorene::Mtbl::set_etat_qcq(), set_etat_qcq(), set_etat_zero(), Lorene::sqrt(), Lorene::Tbl::t, Lorene::Mtbl::t, Lorene::Map::tet, va, Lorene::Map::val_lx(), Lorene::Mtbl_cf::val_point_symy(), Lorene::Map::x, Lorene::Map::y, and Lorene::Map::z.

void Lorene::Cmp::import_asymy ( int  nzet,
const Cmp ci 
)

Assignment to another Cmp defined on a different mapping.

Case where the Cmp is antisymmetric with respect to the plane y=0. This assignment is performed point to point by means of the spectral expansion of the original Cmp .

Parameters:
nzet [input] Number of domains of the destination mapping (i.e. this->mp ) where the importation is performed: the assignment is done for the domains whose indices are between 0 and nzet-1 . In the other domains, *this is set to zero.
ci [input] Cmp to be imported.

Definition at line 82 of file cmp_import_asymy.C.

References Lorene::Map::get_bvect_cart(), import_align_asymy(), import_anti_asymy(), and mp.

void Lorene::Cmp::import_asymy ( const Cmp ci  ) 

Assignment to another Cmp defined on a different mapping.

Case where the Cmp is antisymmetric with respect to the plane y=0. This assignment is performed point to point by means of the spectral expansion of the original Cmp .

Parameters:
ci [input] Cmp to be imported.

Definition at line 70 of file cmp_import_asymy.C.

References Lorene::Map::get_mg(), Lorene::Mg3d::get_nzone(), and mp.

void Lorene::Cmp::import_gal ( int  nzet,
const Cmp ci 
) [private]

Assignment to another Cmp defined on a different mapping, when the two mappings do not have a particular relative orientation.

This assignment is performed point to point by means of the spectral expansion of the original Cmp .

Parameters:
nzet [input] Number of domains of the destination mapping (i.e. this->mp ) where the importation is performed: the assignment is done for the domains whose indices are between 0 and nzet-1 . In the other domains, *this is set to zero.
ci [input] Cmp to be imported.

Definition at line 139 of file cmp_import.C.

References Lorene::Param::add_double(), Lorene::Param::add_int(), Lorene::Param::add_int_mod(), annule(), Lorene::Valeur::c, Lorene::Valeur::c_cf, Lorene::Valeur::coef(), del_t(), dzpuis, etat, Lorene::Map::get_mg(), Lorene::Mg3d::get_np(), Lorene::Mg3d::get_nr(), Lorene::Mg3d::get_nt(), Lorene::Mg3d::get_nzone(), Lorene::Map::get_ori_x(), Lorene::Map::get_ori_y(), Lorene::Map::get_ori_z(), Lorene::Map::get_rot_phi(), mp, Lorene::Map::phi, Lorene::Map::r, set_dzpuis(), Lorene::Valeur::set_etat_c_qcq(), Lorene::Mtbl::set_etat_qcq(), set_etat_qcq(), set_etat_zero(), Lorene::sqrt(), Lorene::Tbl::t, Lorene::Mtbl::t, Lorene::Map::tet, va, Lorene::Map::val_lx(), Lorene::Mtbl_cf::val_point(), Lorene::Map::xa, Lorene::Map::ya, and Lorene::Map::za.

void Lorene::Cmp::import_symy ( int  nzet,
const Cmp ci 
)

Assignment to another Cmp defined on a different mapping.

Case where the Cmp is symmetric with respect to the plane y=0. This assignment is performed point to point by means of the spectral expansion of the original Cmp .

Parameters:
nzet [input] Number of domains of the destination mapping (i.e. this->mp ) where the importation is performed: the assignment is done for the domains whose indices are between 0 and nzet-1 . In the other domains, *this is set to zero.
ci [input] Cmp to be imported.

Definition at line 82 of file cmp_import_symy.C.

References Lorene::Map::get_bvect_cart(), import_align_symy(), import_anti_symy(), and mp.

void Lorene::Cmp::import_symy ( const Cmp ci  ) 

Assignment to another Cmp defined on a different mapping.

Case where the Cmp is symmetric with respect to the plane y=0. This assignment is performed point to point by means of the spectral expansion of the original Cmp .

Parameters:
ci [input] Cmp to be imported.

Definition at line 70 of file cmp_import_symy.C.

References Lorene::Map::get_mg(), Lorene::Mg3d::get_nzone(), and mp.

void Lorene::Cmp::inc2_dzpuis (  ) 

Increases by 2 the value of dzpuis and changes accordingly the values of the Cmp in the external compactified domain (ZEC).

Definition at line 195 of file cmp_r_manip.C.

References Lorene::Map::inc2_dzpuis(), mp, and operator=().

void Lorene::Cmp::inc_dzpuis (  ) 

Increases by the value of dzpuis and changes accordingly the values of the Cmp in the external compactified domain (ZEC).

Definition at line 169 of file cmp_r_manip.C.

References Lorene::Map::inc_dzpuis(), mp, and operator=().

double Lorene::Cmp::integrale (  )  const

Computes the integral over all space of *this .

The computed quantity is (u being the field represented by *this ) $\int u \, r^2 \sin\theta \, dr\, d\theta \, d\phi$. Note that in the external compactified domain (ZEC), dzpuis must be 4 for the computation to take place.

Definition at line 58 of file cmp_integ.C.

References Lorene::Map::get_mg(), Lorene::Mg3d::get_nzone(), integrale_domains(), and mp.

const Tbl & Lorene::Cmp::integrale_domains (  )  const

Computes the integral in each domain of *this .

The computed quantity is (u being the field represented by *this ) $\int u \, r^2 \sin\theta \, dr\, d\theta \, d\phi$ in each domain. The result is returned a Tbl on the various domains. Note that in the external compactified domain (ZEC), dzpuis must be 4 for the computation to take place.

Definition at line 76 of file cmp_integ.C.

References etat, Lorene::Map::integrale(), mp, and p_integ.

const Cmp & Lorene::Cmp::laplacien ( int  zec_mult_r = 4  )  const

Returns the Laplacian of *this.

Parameters:
zec_mult_r [input] Determines the quantity computed in the external compactified domain (ZEC) (u in the field represented by *this ) : \ zec_mult_r = 0 : $\Delta u$ \ zec_mult_r = 2 : $r^2 \, \Delta u$ \ zec_mult_r = 4 (default) : $r^4 \, \Delta u$

Definition at line 245 of file cmp_deriv.C.

References Cmp(), etat, ind_lap, Lorene::Map::laplacien(), mp, and p_lap.

void Lorene::Cmp::mult_cost (  ) 

Multiplication by $.

Definition at line 131 of file cmp_r_manip.C.

References del_deriv(), mp, Lorene::Map::mult_cost(), and operator=().

void Lorene::Cmp::mult_r (  ) 

Multiplication by r everywhere.

Definition at line 94 of file cmp_r_manip.C.

References del_deriv(), mp, and Lorene::Map::mult_r().

void Lorene::Cmp::mult_r_zec (  ) 

Multiplication by r in the external compactified domain (ZEC).

Definition at line 106 of file cmp_r_manip.C.

References del_deriv(), mp, Lorene::Map::mult_r_zec(), and operator=().

void Lorene::Cmp::mult_rsint (  ) 

Multiplication by $r\sin\theta$.

Definition at line 119 of file cmp_r_manip.C.

References del_deriv(), mp, Lorene::Map::mult_rsint(), and operator=().

Tbl Lorene::Cmp::multipole_spectrum (  ) 

Gives the spectrum in terms of multipolar modes l .

Returns:
a Tbl of size (nzone, lmax), where lmax is the maximal multipolar momentum over all domains. The l -th element contains the L1 norm of the l -th multipole (i.e. a sum over all m of the norms (coefficient space) of the component of a given $Y_l^m$.

Definition at line 765 of file cmp.C.

References Lorene::Tbl::annule_hard(), Lorene::Mtbl_cf::base, Lorene::Valeur::c_cf, Lorene::Valeur::coef(), etat, Lorene::Map::get_mg(), Lorene::Mg3d::get_np(), Lorene::Mg3d::get_nr(), Lorene::Mg3d::get_nt(), Lorene::Mg3d::get_nzone(), mp, Lorene::Tbl::set(), Lorene::Tbl::set_etat_zero(), va, and Lorene::Valeur::ylm().

double Lorene::Cmp::operator() ( int  l,
int  k,
int  j,
int  i 
) const [inline]

Read-only of a particular element.

Parameters:
l [input] domain index
k [input] $\phi$ index
j [input] $\theta$ index
i [input] r ($\xi$) index

Definition at line 761 of file cmp.h.

References etat, and va.

const Tbl& Lorene::Cmp::operator() ( int  l  )  const [inline]

Read-only of the value in a given domain.

Parameters:
l [input] domain index
Returns:
Tbl containing the value of the field in domain l .

Definition at line 733 of file cmp.h.

References etat, and va.

void Lorene::Cmp::operator*= ( const Cmp ci  ) 

*= Cmp

Definition at line 671 of file cmp_arithm.C.

References del_deriv(), dzpuis, etat, get_etat(), get_mp(), mp, set_etat_nondef(), set_etat_zero(), and va.

void Lorene::Cmp::operator+= ( const Cmp ci  ) 

+= Cmp

Definition at line 578 of file cmp_arithm.C.

References del_deriv(), dz_nonzero(), dzpuis, etat, get_etat(), get_mp(), mp, set_dzpuis(), set_etat_nondef(), and va.

void Lorene::Cmp::operator-= ( const Cmp ci  ) 

-= Cmp

Definition at line 626 of file cmp_arithm.C.

References del_deriv(), dz_nonzero(), dzpuis, etat, get_etat(), get_mp(), mp, set_dzpuis(), set_etat_nondef(), and va.

void Lorene::Cmp::operator= ( int  n  ) 

Assignment to an int.

Definition at line 545 of file cmp.C.

References del_deriv(), dzpuis, set_etat_qcq(), set_etat_zero(), and va.

void Lorene::Cmp::operator= ( double  x  ) 

Assignment to a double.

Definition at line 529 of file cmp.C.

References del_deriv(), dzpuis, set_etat_qcq(), set_etat_zero(), and va.

void Lorene::Cmp::operator= ( const Mtbl a  ) 
void Lorene::Cmp::operator= ( const Valeur a  ) 

Assignment to a Valeur.

Definition at line 446 of file cmp.C.

References del_deriv(), Lorene::Valeur::del_t(), Lorene::Valeur::get_etat(), set_etat_qcq(), set_etat_zero(), and va.

void Lorene::Cmp::operator= ( const Cmp a  ) 

Assignment to another Cmp defined on the same mapping.

Definition at line 401 of file cmp.C.

References del_deriv(), Lorene::Valeur::del_t(), dzpuis, etat, mp, set_etat_nondef(), set_etat_qcq(), set_etat_zero(), and va.

void Lorene::Cmp::poisson ( Param par,
Cmp uu 
) const

Solves the scalar Poisson equation with *this as a source (version with parameters to control the resolution).

The source $\sigma$ of the equation $\Delta u = \sigma$ is represented by the Cmp *this . Note that dzpuis must be equal to 2 or 4, i.e. that the quantity stored in *this is in fact $r^2 \sigma$ or $r^4 \sigma$ in the external compactified domain.

Parameters:
par [input/output] possible parameters
uu [input/output] solution u with the boundary condition u =0 at spatial infinity.

Definition at line 110 of file cmp_pde.C.

References mp, and Lorene::Map::poisson().

Cmp Lorene::Cmp::poisson (  )  const

Solves the scalar Poisson equation with *this as a source.

The source $\sigma$ of the equation $\Delta u = \sigma$ is represented by the Cmp *this . Note that dzpuis must be equal to 2, 3 or 4, i.e. that the quantity stored in *this is in fact $r^2 \sigma$ or $r^4 \sigma$ in the external compactified domain. The solution u with the boundary condition u =0 at spatial infinity is the returned Cmp .

Definition at line 97 of file cmp_pde.C.

References mp, and Lorene::Map::poisson().

Cmp Lorene::Cmp::poisson_dirichlet ( const Valeur limite,
int  num 
) const

Is identicall to Cmp::poisson() .

The regularity condition at the origin is replace by a boundary condition of the Dirichlet type.

Parameters:
limite [input] : angular function. The boundary condition is given by limite[num] .
num [input] : index of the boudary at which the condition is to be fullfilled.

More precisely we impose the solution is equal to limite[num] at the boundary between the domains num and num+1 (the latter one being a shell).

Definition at line 98 of file cmp_pde_frontiere.C.

References mp, and Lorene::Map::poisson_frontiere().

Cmp Lorene::Cmp::poisson_neumann ( const Valeur limite,
int  num_front 
) const

Idem as Cmp::poisson_dirichlet , the boundary condition being on the radial derivative of the solution.

Definition at line 106 of file cmp_pde_frontiere.C.

References mp, and Lorene::Map::poisson_frontiere().

Cmp Lorene::Cmp::poisson_neumann_interne ( const Valeur limite,
Param par,
Cmp resu 
) const

Idem as Cmp::poisson_neumann , the boundary condition is on the radial derivative of the solution.

But in this method, the poisson equation is solved in the shell only. We have so to impose a boundary condition on the surface of the star. This is used for example to solve the continuity equation for the fluid in the star.

Definition at line 113 of file cmp_pde_frontiere.C.

References mp, and Lorene::Map::poisson_interne().

void Lorene::Cmp::poisson_regular ( int  k_div,
int  nzet,
double  unsgam1,
Param par,
Cmp uu,
Cmp uu_regu,
Cmp uu_div,
Tenseur duu_div,
Cmp source_regu,
Cmp source_div 
) const

Solves the scalar Poisson equation with *this as a source (version with parameters to control the resolution).

The source $\sigma$ of the equation $\Delta u = \sigma$ is represented by the Cmp *this . The regularized source $\sigma_{\rm regu} = \sigma - \sigma_{\rm div}$ is constructed and solved. Note that dzpuis must be equal to 2 or 4, i.e. that the quantity stored in *this is in fact $r^2 \sigma$ or $r^4 \sigma$ in the external compactified domain.

Parameters:
k_div [input] regularization degree of the procedure
nzet [input] number of domains covering the star
unsgam1 [input] parameter $1/(\gamma-1)$ where $\gamma$ denotes the adiabatic index
par [input/output] possible parameters
uu [input/output] solution
uu_regu [output] solution of the regular part of the source.
uu_div [output] solution of the diverging part of the source.
duu_div [output] derivative of the diverging potential.
source_regu [output] regularized source
source_div [output] diverging part of the source

Definition at line 91 of file cmp_poisson_regu.C.

References mp, and Lorene::Map::poisson_regular().

void Lorene::Cmp::poisson_tau ( Param par,
Cmp uu 
) const

Same as Poisson with a Tau method.

Definition at line 136 of file cmp_pde.C.

References mp, and Lorene::Map::poisson_tau().

Cmp Lorene::Cmp::poisson_tau (  )  const

Same as Poisson with a Tau method.

Definition at line 123 of file cmp_pde.C.

References mp, and Lorene::Map::poisson_tau().

void Lorene::Cmp::raccord ( int  n  ) 
void Lorene::Cmp::raccord_c1_zec ( int  puis,
int  nbre,
int  lmax 
)
void Lorene::Cmp::raccord_externe ( int  puis,
int  nbre,
int  lmax 
)
void Lorene::Cmp::sauve ( FILE *  fd  )  const

Save in a file.

Definition at line 564 of file cmp.C.

References dzpuis, etat, Lorene::fwrite_be(), Lorene::Valeur::sauve(), and va.

double& Lorene::Cmp::set ( int  l,
int  k,
int  j,
int  i 
) [inline]

Read/write of a particular element.

NB: to gain in efficiency, the method del_deriv() (to delete the derived members) is not called by this function. It must thus be invoqued by the user.

Parameters:
l [input] domain index
k [input] $\phi$ index
j [input] $\theta$ index
i [input] r ($\xi$) index

Definition at line 749 of file cmp.h.

References etat, Lorene::Valeur::set(), and va.

Tbl& Lorene::Cmp::set ( int  l  )  [inline]

Read/write of the value in a given domain.

NB: to gain in efficiency, the method del_deriv() (to delete the derived members) is not called by this function. It must thus be invoqued by the user.

Parameters:
l [input] domain index
Returns:
Tbl containing the value of the field in domain l .

Definition at line 724 of file cmp.h.

References etat, Lorene::Valeur::set(), and va.

void Lorene::Cmp::set_der_0x0 (  )  [private]

Sets the pointers for derivatives to 0x0.

Definition at line 279 of file cmp.C.

References ind_lap, p_dsdr, p_dsdx, p_dsdy, p_dsdz, p_integ, p_lap, p_srdsdt, and p_srstdsdp.

void Lorene::Cmp::set_dzpuis ( int  dzi  ) 

Set a value to dzpuis.

Definition at line 657 of file cmp.C.

References dzpuis.

void Lorene::Cmp::set_etat_nondef (  ) 

Sets the logical state to ETATNONDEF (undefined).

Calls the logical destructor of the Valeur va and deallocates the memory occupied by all the derivatives.

Definition at line 300 of file cmp.C.

References del_t(), and etat.

void Lorene::Cmp::set_etat_qcq (  ) 

Sets the logical state to ETATQCQ (ordinary state).

If the state is already ETATQCQ , this function does nothing. Otherwise, it calls the logical destructor of the Valeur va and deallocates the memory occupied by all the derivatives.

Definition at line 307 of file cmp.C.

References del_deriv(), del_t(), and etat.

void Lorene::Cmp::set_etat_zero (  ) 

Sets the logical state to ETATZERO (zero).

Calls the logical destructor of the Valeur va and deallocates the memory occupied by all the derivatives.

Definition at line 292 of file cmp.C.

References del_deriv(), etat, Lorene::Valeur::set_etat_zero(), and va.

void Lorene::Cmp::set_val_hor ( double  val,
int  zone 
)

Sets the value of the Cmp to val on the inner boudary of the shell number zone .This is usefull for dealing with undefined values.

Definition at line 162 of file cmp_manip.C.

References annule_hard(), Lorene::Valeur::coef_i(), del_deriv(), etat, Lorene::Map::get_mg(), Lorene::Mg3d::get_np(), Lorene::Mg3d::get_nt(), mp, Lorene::Valeur::set(), Lorene::Valeur::set_etat_c_qcq(), and va.

void Lorene::Cmp::set_val_inf ( double  val  ) 

Sets the value of the Cmp to val at infinity.

This is usefull for dealing with undefined values. The external domain must be compactified.

Definition at line 129 of file cmp_manip.C.

References annule_hard(), Lorene::Valeur::coef_i(), del_deriv(), etat, Lorene::Map::get_mg(), Lorene::Mg3d::get_np(), Lorene::Mg3d::get_nr(), Lorene::Mg3d::get_nt(), Lorene::Mg3d::get_nzone(), Lorene::Mg3d::get_type_r(), mp, Lorene::Valeur::set(), Lorene::Valeur::set_etat_c_qcq(), and va.

const Cmp & Lorene::Cmp::srdsdt (  )  const

Returns $1/r \partial / \partial \theta$ of *this .

Note that in the external compactified domain (ZEC), it returns instead $r \partial/ \partial \theta$.

Definition at line 108 of file cmp_deriv.C.

References Cmp(), etat, mp, p_srdsdt, and Lorene::Map::srdsdt().

const Cmp & Lorene::Cmp::srstdsdp (  )  const

Returns $1/(r\sin\theta) \partial / \partial \phi$ of *this .

Note that in the external compactified domain (ZEC), it returns instead $r/\sin\theta \partial/ \partial \phi$.

Definition at line 130 of file cmp_deriv.C.

References Cmp(), etat, mp, p_srstdsdp, and Lorene::Map::srstdsdp().

void Lorene::Cmp::std_base_scal (  ) 

Sets the spectral bases of the Valeur va to the standard ones for a scalar.

Definition at line 647 of file cmp.C.

References Lorene::Valeur::std_base_scal(), and va.

Tbl Lorene::Cmp::test_poisson ( const Cmp uu,
ostream &  ostr,
bool  detail = false 
) const

Checks if a Poisson equation with *this as a source has been correctly solved.

Parameters:
uu [input] Solution u of the Poisson equation $\Delta u = \sigma$, $\sigma$ being represented by the Cmp *this .
ostr [input/output] Output stream used for displaying err .
detail [input]

  • if true displays err(0,*) , err(1,*) and err(2,*)
  • if false (default), displays only the relative error err(0,*).
Returns:
2-D Tbl err decribing the errors in each domain:
  • err(0,l) : Relative error in domain no. l , defined as the maximum value of $|\Delta u - \sigma|$ in that domain divided by m , where m is the maximum value of $|\sigma|$ over all domains if dzpuis = 0} or $\sigma$ is zero in the external compactified domain (ECD). If dzpuis != 0} and $\sigma$ does not vanish in the ECD, the value of m used in the non-compactified domains is the maximum value over these domains, whereas the value of m used in the external compactified domain is the maximum value on that particular domain.
  • err(1,l) : Maximum value of the absolute error $|\Delta u - \sigma|$ in domain no. l
  • err(2,l) : Maximum value of $|\sigma|$ in domain no. l

Definition at line 61 of file cmp_test_poisson.C.

References Lorene::abs(), check_dzpuis(), dzpuis, Lorene::Map::get_mg(), get_mp(), Lorene::Mg3d::get_nzone(), laplacien(), Lorene::max(), mp, Lorene::Tbl::set(), and Lorene::Tbl::set_etat_qcq().

double Lorene::Cmp::val_point ( double  r,
double  theta,
double  phi 
) const

Computes the value of the field represented by *this at an arbitrary point $(r, \theta, \phi)$, by means of the spectral expansion.

Parameters:
r [input] value of the coordinate r
theta [input] value of the coordinate $\theta$
phi [input] value of the coordinate $\phi$
Returns:
value at the point $(r, \theta, \phi)$ of the field represented by *this .

Definition at line 735 of file cmp.C.

References etat, mp, va, Lorene::Map::val_lx(), and Lorene::Valeur::val_point().


Friends And Related Function Documentation

ostream& operator<< ( ostream &  ,
const Cmp  
) [friend]

Display.


Member Data Documentation

int Lorene::Cmp::dzpuis [private]

Power of r by which the quantity represented by this must be divided in the external compactified zone in order to get the correct physical values.

Definition at line 461 of file cmp.h.

int Lorene::Cmp::etat [private]

Logical state (ETATNONDEF , ETATQCQ or ETATZERO ).

Definition at line 454 of file cmp.h.

int Lorene::Cmp::ind_lap [mutable, private]

Power of r by which the last computed Laplacian has been multiplied in the external compactified domain.

Definition at line 498 of file cmp.h.

const Map* Lorene::Cmp::mp [private]

Reference mapping.

Definition at line 451 of file cmp.h.

Cmp* Lorene::Cmp::p_dsdr [mutable, private]

Pointer on $\partial/\partial r$ of *this.

Definition at line 470 of file cmp.h.

Cmp* Lorene::Cmp::p_dsdx [mutable, private]

Pointer on $\partial/\partial x$ of *this , where $x=r\sin\theta \cos\phi$.

Definition at line 479 of file cmp.h.

Cmp* Lorene::Cmp::p_dsdy [mutable, private]

Pointer on $\partial/\partial y$ of *this , where $y=r\sin\theta \sin\phi$.

Definition at line 484 of file cmp.h.

Cmp* Lorene::Cmp::p_dsdz [mutable, private]

Pointer on $\partial/\partial z$ of *this , where $z=r\cos\theta$.

Definition at line 489 of file cmp.h.

Tbl* Lorene::Cmp::p_integ [mutable, private]

Pointer on the space integral of *this (values in each domain).

Definition at line 503 of file cmp.h.

Cmp* Lorene::Cmp::p_lap [mutable, private]

Pointer on the Laplacian of *this.

Definition at line 493 of file cmp.h.

Cmp* Lorene::Cmp::p_srdsdt [mutable, private]

Pointer on $1/r \partial/\partial \theta$ of *this.

Definition at line 472 of file cmp.h.

Cmp* Lorene::Cmp::p_srstdsdp [mutable, private]

Pointer on $1/(r\sin\theta) \partial/\partial \phi$ of *this.

Definition at line 474 of file cmp.h.

The numerical value of the Cmp.

Definition at line 464 of file cmp.h.


The documentation for this class was generated from the following files:

Generated on 7 Dec 2019 for LORENE by  doxygen 1.6.1