LORENE
scalar_pde.C
1 /*
2  * Methods of the class Scalar for various partial differential equations
3  *
4  * See file scalar.h for documentation.
5  */
6 
7 /*
8  * Copyright (c) 2003-2005 Eric Gourgoulhon & Jerome Novak
9  * Copyright (c) 2004 Philippe Grandclement
10  *
11  * Copyright (c) 1999-2001 Eric Gourgoulhon (for preceding class Cmp)
12  * Copyright (c) 1999-2001 Philippe Grandclement (for preceding class Cmp)
13  * Copyright (c) 2000-2001 Jerome Novak (for preceding class Cmp)
14  *
15  * This file is part of LORENE.
16  *
17  * LORENE is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License as published by
19  * the Free Software Foundation; either version 2 of the License, or
20  * (at your option) any later version.
21  *
22  * LORENE is distributed in the hope that it will be useful,
23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25  * GNU General Public License for more details.
26  *
27  * You should have received a copy of the GNU General Public License
28  * along with LORENE; if not, write to the Free Software
29  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
30  *
31  */
32 
33 
34 
35 
36 /*
37  * $Id: scalar_pde.C,v 1.22 2025/03/04 13:16:50 j_novak Exp $
38  * $Log: scalar_pde.C,v $
39  * Revision 1.22 2025/03/04 13:16:50 j_novak
40  * New complete versions of Map_af::poisson() and Map_et::poisson() for Scalar, not using Cmp.
41  *
42  * Revision 1.21 2016/12/05 16:18:19 j_novak
43  * Suppression of some global variables (file names, loch, ...) to prevent redefinitions
44  *
45  * Revision 1.20 2014/10/13 08:53:46 j_novak
46  * Lorene classes and functions now belong to the namespace Lorene.
47  *
48  * Revision 1.19 2007/05/06 10:48:15 p_grandclement
49  * Modification of a few operators for the vorton project
50  *
51  * Revision 1.18 2007/01/16 15:10:00 n_vasset
52  * New function sol_elliptic_boundary, with Scalar on mono domain
53  * angular grid as boundary
54  *
55  * Revision 1.17 2005/11/30 11:09:09 p_grandclement
56  * Changes for the Bin_ns_bh project
57  *
58  * Revision 1.16 2005/08/26 14:02:41 p_grandclement
59  * Modification of the elliptic solver that matches with an oscillatory exterior solution
60  * small correction in Poisson tau also...
61  *
62  * Revision 1.15 2005/08/25 12:14:10 p_grandclement
63  * Addition of a new method to solve the scalar Poisson equation, based on a multi-domain Tau-method
64  *
65  * Revision 1.14 2005/06/09 08:00:10 f_limousin
66  * Implement a new function sol_elliptic_boundary() and
67  * Vector::poisson_boundary(...) which solve the vectorial poisson
68  * equation (method 6) with an inner boundary condition.
69  *
70  * Revision 1.13 2005/04/04 21:34:44 e_gourgoulhon
71  * Added argument lambda to method poisson_angu
72  * to deal with the generalized angular Poisson equation:
73  * Lap_ang u + lambda u = source.
74  *
75  * Revision 1.12 2004/08/24 09:14:52 p_grandclement
76  * Addition of some new operators, like Poisson in 2d... It now requieres the
77  * GSL library to work.
78  *
79  * Also, the way a variable change is stored by a Param_elliptic is changed and
80  * no longer uses Change_var but rather 2 Scalars. The codes using that feature
81  * will requiere some modification. (It should concern only the ones about monopoles)
82  *
83  * Revision 1.11 2004/06/22 08:50:00 p_grandclement
84  * Addition of everything needed for using the logarithmic mapping
85  *
86  * Revision 1.10 2004/05/25 14:30:48 f_limousin
87  * Minor modif.
88  *
89  * Revision 1.9 2004/03/17 15:58:50 p_grandclement
90  * Slight modification of sol_elliptic_no_zec
91  *
92  * Revision 1.8 2004/03/01 09:57:04 j_novak
93  * the wave equation is solved with Scalars. It now accepts a grid with a
94  * compactified external domain, which the solver ignores and where it copies
95  * the values of the field from one time-step to the next.
96  *
97  * Revision 1.7 2004/02/11 09:47:46 p_grandclement
98  * Addition of a new elliptic solver, matching with the homogeneous solution
99  * at the outer shell and not solving in the external domain (more details
100  * coming soon ; check your local Lorene dealer...)
101  *
102  * Revision 1.6 2004/01/28 16:59:14 p_grandclement
103  * *** empty log message ***
104  *
105  * Revision 1.5 2004/01/28 16:46:24 p_grandclement
106  * Addition of the sol_elliptic_fixe_der_zero stuff
107  *
108  * Revision 1.4 2004/01/14 10:11:51 f_limousin
109  * Corrected bug in poisson with parameters.
110  *
111  * Revision 1.3 2003/12/11 14:48:51 p_grandclement
112  * Addition of ALL (and that is a lot !) the files needed for the general elliptic solver ... UNDER DEVELOPEMENT...
113  *
114  * Revision 1.2 2003/10/15 21:14:23 e_gourgoulhon
115  * Added method poisson_angu().
116  *
117  * Revision 1.1 2003/09/25 08:06:56 e_gourgoulhon
118  * First versions (use Cmp as intermediate quantities).
119  *
120  *
121  * $Header: /cvsroot/Lorene/C++/Source/Tensor/Scalar/scalar_pde.C,v 1.22 2025/03/04 13:16:50 j_novak Exp $
122  *
123  */
124 
125 // Header Lorene:
126 #include "tensor.h"
127 #include "param.h"
128 #include "param_elliptic.h"
129 
130 
131  //-----------------------------------//
132  // Scalar Poisson equation //
133  //-----------------------------------//
134 
135 // Version without parameters
136 // --------------------------
137 
138 namespace Lorene {
140 
141  Param bidon ;
142  Scalar resu(*mp) ;
143 
144  mp->poisson(*this, bidon, resu) ;
145 
146  return resu ;
147 }
148 
149 // Version with parameters
150 // -----------------------
151 
152 void Scalar::poisson(Param& par, Scalar& uu) const {
153 
154  mp->poisson(*this, par, uu) ;
155 
156 }
157 
158  //-----------------------------------------------//
159  // Scalar Poisson equation (TAU method) //
160  //----------------------------------------------//
161 
162  // without parameters
163  // --------------------------
164 
166 
167  Param bidon ;
168  Scalar resu(*mp) ;
169 
170  mp->poisson_tau(*this, bidon, resu) ;
171 
172  return resu ;
173 }
174 
175  // Version with parameters
176  // -----------------------
177 void Scalar::poisson_tau (Param& par, Scalar& uu) const {
178 
179  mp->poisson_tau(*this, par, uu) ;
180 
181 }
182 
183 
184  //-----------------------------------//
185  // Angular Poisson equation //
186  //-----------------------------------//
187 
188 
189 Scalar Scalar::poisson_angu(double lambda) const {
190 
191  Param bidon ;
192 
193  Scalar resu(*mp) ;
194  resu = 0. ;
195 
196  mp->poisson_angu(*this, bidon, resu, lambda) ;
197 
198  return resu ;
199 }
200 
201 
202  //-----------------------------------//
203  // Scalar d'Alembert equation //
204  //-----------------------------------//
205 
207  const Scalar& source) const {
208 
209  Scalar fjp1(*mp) ;
210 
211  mp->dalembert(par, fjp1, *this, fjm1, source) ;
212 
213  return fjp1 ;
214 
215 }
216 
217 
218  //-----------------------------------//
219  // General elliptic equation //
220  //-----------------------------------//
221 
222 
224 
225  // Right now, only applicable with affine mapping or log one
226  const Map_af* map_affine = dynamic_cast <const Map_af*> (mp) ;
227  const Map_log* map_log = dynamic_cast <const Map_log*> (mp) ;
228 
229  if ((map_affine == 0x0) && (map_log == 0x0)) {
230  cout << "sol_elliptic only defined for affine or log mapping" << endl ;
231  abort() ;
232  }
233 
234  Scalar res (*mp) ;
235  res.set_etat_qcq() ;
236 
237  if (map_affine != 0x0)
238  map_affine->sol_elliptic (ope_var, *this, res) ;
239  else
240  map_log->sol_elliptic (ope_var, *this, res) ;
241 
242  return (res) ;
243 }
244 
246 double fact_dir, double fact_neu) const {
247 
248  // Right now, only applicable with affine mapping or log one
249  const Map_af* map_affine = dynamic_cast <const Map_af*> (mp) ;
250  const Map_log* map_log = dynamic_cast <const Map_log*> (mp) ;
251 
252  if ((map_affine == 0x0) && (map_log == 0x0)) {
253  cout << "sol_elliptic only defined for affine or log mapping" << endl ;
254  abort() ;
255  }
256 
257  Scalar res (*mp) ;
258  res.set_etat_qcq() ;
259 
260  if (map_affine != 0x0)
261  map_affine->sol_elliptic_boundary (ope_var, *this, res, bound,
262 fact_dir, fact_neu ) ;
263  else
264  map_log->sol_elliptic_boundary (ope_var, *this, res, bound,
265 fact_dir, fact_neu ) ;
266 
267  return (res) ;
268 }
269 
270 
272 double fact_dir, double fact_neu) const {
273 
274  // Right now, only applicable with affine mapping or log one
275  const Map_af* map_affine = dynamic_cast <const Map_af*> (mp) ;
276  const Map_log* map_log = dynamic_cast <const Map_log*> (mp) ;
277 
278  if ((map_affine == 0x0) && (map_log == 0x0)) {
279  cout << "sol_elliptic only defined for affine or log mapping" << endl ;
280  abort() ;
281  }
282 
283  Scalar res (*mp) ;
284  res.set_etat_qcq() ;
285 
286  if (map_affine != 0x0)
287  map_affine->sol_elliptic_boundary (ope_var, *this, res, bound,
288 fact_dir, fact_neu ) ;
289  else
290  map_log->sol_elliptic_boundary (ope_var, *this, res, bound,
291 fact_dir, fact_neu ) ;
292 
293  return (res) ;
294 }
295 
296 
297 
298  //-----------------------------------//
299  // General elliptic equation //
300  // with no ZEC //
301  //-----------------------------------//
302 
303 Scalar Scalar::sol_elliptic_no_zec(Param_elliptic& ope_var, double val) const {
304 
305  // Right now, only applicable with affine mapping
306  const Map_af* map_affine = dynamic_cast <const Map_af*> (mp) ;
307  const Map_log* map_log = dynamic_cast <const Map_log*> (mp) ;
308 
309  if ((map_affine == 0x0) && (map_log == 0x0)) {
310  cout << "sol_elliptic_no_zec only defined for affine or log mapping" << endl ;
311  abort() ;
312  }
313 
314  Scalar res (*mp) ;
315  res.set_etat_qcq() ;
316 
317  if (map_affine != 0x0)
318  map_affine->sol_elliptic_no_zec (ope_var, *this, res, val) ;
319  else
320  map_log->sol_elliptic_no_zec (ope_var, *this, res, val) ;
321 
322  return (res) ;
323 }
324 
325  //-----------------------------------//
326  // General elliptic equation //
327  // with no ZEC //
328  //-----------------------------------//
329 
331 
332  // Right now, only applicable with affine mapping
333  const Map_af* map_affine = dynamic_cast <const Map_af*> (mp) ;
334 
335  if (map_affine == 0x0) {
336  cout << "sol_elliptic_no_zec only defined for affine or log mapping" << endl ;
337  abort() ;
338  }
339 
340  Scalar res (*mp) ;
341  res.set_etat_qcq() ;
342 
343  map_affine->sol_elliptic_only_zec (ope_var, *this, res, val) ;
344  return (res) ;
345 }
346  //-----------------------------------//
347  // General elliptic equation //
348  // with no ZEC and a //
349  // matching with sin(r)/r //
350  //-----------------------------------//
351 
352 Scalar Scalar::sol_elliptic_sin_zec(Param_elliptic& ope_var, double* amplis, double* phases)
353  const {
354 
355  // Right now, only applicable with affine mapping
356  const Map_af* map_affine = dynamic_cast <const Map_af*> (mp) ;
357 
358  if (map_affine == 0x0) {
359  cout << "sol_elliptic_sin_zec only defined for affine mapping" << endl ;
360  abort() ;
361  }
362 
363  Scalar res (*mp) ;
364  res.set_etat_qcq() ;
365 
366  map_affine->sol_elliptic_sin_zec (ope_var, *this, res, amplis, phases) ;
367 
368  return (res) ;
369 }
370  //-----------------------------------//
371  // General elliptic equation //
372  // fixing the radial derivative //
373  //-----------------------------------//
374 
376  Param_elliptic& ope_var) const {
377 
378  // Right now, only applicable with affine mapping
379  const Map_af* map_affine = dynamic_cast <const Map_af*> (mp) ;
380 
381  if (map_affine == 0x0) {
382  cout << "sol_elliptic_no_zec only defined for affine mapping" << endl ;
383  abort() ;
384  }
385 
386  Scalar res (*mp) ;
387  res.set_etat_qcq() ;
388 
389  map_affine->sol_elliptic_fixe_der_zero (valeur, ope_var, *this, res) ;
390 
391  return (res) ;
392 }
393 
394  //-----------------------------------//
395  // Two-dimensional Poisson eq. //
396  //-----------------------------------//
397 
399 
400  // Right now, only applicable with affine mapping
401  const Map_af* map_affine = dynamic_cast <const Map_af*> (mp) ;
402 
403  if (map_affine == 0x0) {
404  cout << "Poisson 2D only defined for affine mapping" << endl ;
405  abort() ;
406  }
407 
408  Scalar res (*mp) ;
409  res.set_etat_qcq() ;
410 
411  map_affine->sol_elliptic_2d(ope_var, *this, res) ;
412 
413  return (res) ;
414 }
415  //-----------------------------------//
416  // Pseudo-1dimensional eq. //
417  //-----------------------------------//
418 
420 
421  // Right now, only applicable with affine mapping
422  const Map_af* map_affine = dynamic_cast <const Map_af*> (mp) ;
423 
424  if (map_affine == 0x0) {
425  cout << "Pseudo_1d only defined for affine mapping" << endl ;
426  abort() ;
427  }
428 
429  Scalar res (*mp) ;
430  res.set_etat_qcq() ;
431 
432  map_affine->sol_elliptic_pseudo_1d(ope_var, *this, res) ;
433 
434  return (res) ;
435 }
436 }
Lorene prototypes.
Definition: app_hor.h:67
void sol_elliptic_only_zec(Param_elliptic &params, const Scalar &so, Scalar &uu, double val) const
General elliptic solver.
Tensor field of valence 0 (or component of a tensorial field).
Definition: scalar.h:399
Scalar poisson() const
Solves the scalar Poisson equation with *this as a source.
Definition: scalar_pde.C:139
void sol_elliptic_2d(Param_elliptic &, const Scalar &, Scalar &) const
General elliptic solver in a 2D case.
Scalar sol_elliptic_fixe_der_zero(double val, Param_elliptic &params) const
Resolution of a general elliptic equation fixing the dericative at the origin and relaxing one contin...
Definition: scalar_pde.C:375
virtual void set_etat_qcq()
Sets the logical state to ETATQCQ (ordinary state).
Definition: scalar.C:359
Scalar poisson_angu(double lambda=0) const
Solves the (generalized) angular Poisson equation with *this as source.
Definition: scalar_pde.C:189
Scalar sol_elliptic_only_zec(Param_elliptic &params, double val) const
Resolution of a general elliptic equation solving in the compactified domain and putting a given valu...
Definition: scalar_pde.C:330
virtual void poisson_tau(const Cmp &source, Param &par, Cmp &uu) const =0
Computes the solution of a scalar Poisson equationwith a Tau method (Cmp version).
Scalar avance_dalembert(Param &par, const Scalar &fJm1, const Scalar &source) const
Performs one time-step integration (from ) of the scalar d&#39;Alembert equation with *this being the val...
Definition: scalar_pde.C:206
virtual void dalembert(Param &par, Scalar &fJp1, const Scalar &fJ, const Scalar &fJm1, const Scalar &source) const =0
Performs one time-step integration of the d&#39;Alembert scalar equation.
Scalar sol_elliptic_no_zec(Param_elliptic &params, double val=0) const
Resolution of a general elliptic equation, putting a given value at the outermost shell and not solvi...
Definition: scalar_pde.C:303
Logarithmic radial mapping.
Definition: map.h:3779
Scalar sol_elliptic(Param_elliptic &params) const
Resolution of a general elliptic equation, putting zero at infinity.
Definition: scalar_pde.C:223
Scalar sol_elliptic_boundary(Param_elliptic &params, const Mtbl_cf &bound, double fact_dir, double fact_neu) const
Resolution of a general elliptic equation, putting zero at infinity and with inner boundary condition...
Definition: scalar_pde.C:245
void sol_elliptic_no_zec(Param_elliptic &params, const Scalar &so, Scalar &uu, double val) const
General elliptic solver.
Parameter storage.
Definition: param.h:125
This class contains the parameters needed to call the general elliptic solver.
void sol_elliptic(Param_elliptic &params, const Scalar &so, Scalar &uu) const
General elliptic solver.
Affine radial mapping.
Definition: map.h:2097
void sol_elliptic_fixe_der_zero(double val, Param_elliptic &params, const Scalar &so, Scalar &uu) const
General elliptic solver fixing the derivative at the origin and relaxing the continuity of the first ...
Scalar sol_elliptic_pseudo_1d(Param_elliptic &) const
Solves a pseudo-1d elliptic equation with *this as a source.
Definition: scalar_pde.C:419
virtual void poisson(const Cmp &source, Param &par, Cmp &uu) const =0
Computes the solution of a scalar Poisson equation (Cmp version).
Coefficients storage for the multi-domain spectral method.
Definition: mtbl_cf.h:196
void sol_elliptic_pseudo_1d(Param_elliptic &, const Scalar &, Scalar &) const
General elliptic solver in a pseudo 1d case.
void sol_elliptic_boundary(Param_elliptic &params, const Scalar &so, Scalar &uu, const Mtbl_cf &bound, double fact_dir, double fact_neu) const
General elliptic solver including inner boundary conditions.
const Map *const mp
Mapping on which the numerical values at the grid points are defined.
Definition: tensor.h:307
Scalar sol_elliptic_sin_zec(Param_elliptic &params, double *coefs, double *phases) const
General elliptic solver.
Definition: scalar_pde.C:352
void sol_elliptic_sin_zec(Param_elliptic &params, const Scalar &so, Scalar &uu, double *coefs, double *) const
General elliptic solver.
virtual void poisson_angu(const Scalar &source, Param &par, Scalar &uu, double lambda=0) const =0
Computes the solution of the generalized angular Poisson equation.
Scalar sol_elliptic_2d(Param_elliptic &) const
Solves the scalar 2-dimensional elliptic equation with *this as a source.
Definition: scalar_pde.C:398
Scalar poisson_tau() const
Solves the scalar Poisson equation with *this as a source using a real Tau method The source of the ...
Definition: scalar_pde.C:165