LORENE

Affine radial mapping. More...

#include <map.h>

Inheritance diagram for Lorene::Map_af:
Lorene::Map_radial Lorene::Map

Public Member Functions

 Map_af (const Mg3d &mgrille, const double *r_limits)
 Standard Constructor. More...
 
 Map_af (const Mg3d &mgrille, const Tbl &r_limits)
 Standard Constructor with Tbl. More...
 
 Map_af (const Map_af &)
 Copy constructor. More...
 
 Map_af (const Mg3d &, const string &)
 Constructor from a formatted file. More...
 
 Map_af (const Mg3d &, FILE *)
 Constructor from a file (see sauve(FILE*) ) More...
 
 Map_af (const Map &)
 Constructor from a general mapping. More...
 
virtual ~Map_af ()
 Destructor. More...
 
virtual void operator= (const Map_af &)
 Assignment to another affine mapping. More...
 
const double * get_alpha () const
 Returns the pointer on the array alpha. More...
 
const double * get_beta () const
 Returns the pointer on the array beta. More...
 
virtual const Map_afmp_angu (int) const
 Returns the "angular" mapping for the outside of domain l_zone. More...
 
virtual double val_r (int l, double xi, double theta, double pphi) const
 Returns the value of the radial coordinate r for a given $(\xi, \theta', \phi')$ in a given domain. More...
 
virtual void val_lx (double rr, double theta, double pphi, int &l, double &xi) const
 Computes the domain index l and the value of $\xi$ corresponding to a point given by its physical coordinates $(r, \theta, \phi)$. More...
 
virtual void val_lx (double rr, double theta, double pphi, const Param &par, int &l, double &xi) const
 Computes the domain index l and the value of $\xi$ corresponding to a point given by its physical coordinates $(r, \theta, \phi)$. More...
 
virtual double val_r_jk (int l, double xi, int j, int k) const
 Returns the value of the radial coordinate r for a given $\xi$ and a given collocation point in $(\theta', \phi')$ in a given domain. More...
 
virtual void val_lx_jk (double rr, int j, int k, const Param &par, int &l, double &xi) const
 Computes the domain index l and the value of $\xi$ corresponding to a point of arbitrary r but collocation values of $(\theta, \phi)$. More...
 
virtual bool operator== (const Map &) const
 Comparison operator (egality) More...
 
virtual void sauve (FILE *) const
 Save in a file. More...
 
virtual void homothetie (double lambda)
 Sets a new radial scale. More...
 
virtual void resize (int l, double lambda)
 Rescales the outer boundary of one domain. More...
 
void homothetie_interne (double lambda)
 Sets a new radial scale at the bondary between the nucleus and the first shell. More...
 
virtual void adapt (const Cmp &ent, const Param &par, int nbr=0)
 Adaptation of the mapping to a given scalar field. More...
 
void set_alpha (double alpha0, int l)
 Modifies the value of $\alpha$ in domain no. l. More...
 
void set_beta (double beta0, int l)
 Modifies the value of $\beta$ in domain no. l. More...
 
virtual void dsdxi (const Cmp &ci, Cmp &resu) const
 Computes $\partial/ \partial \xi$ of a Cmp. More...
 
virtual void dsdr (const Cmp &ci, Cmp &resu) const
 Computes $\partial/ \partial r$ of a Cmp. More...
 
virtual void srdsdt (const Cmp &ci, Cmp &resu) const
 Computes $1/r \partial/ \partial \theta$ of a Cmp. More...
 
virtual void srstdsdp (const Cmp &ci, Cmp &resu) const
 Computes $1/(r\sin\theta) \partial/ \partial \phi$ of a Cmp. More...
 
virtual void dsdr (const Scalar &uu, Scalar &resu) const
 Computes $\partial/ \partial r$ of a Scalar. More...
 
virtual void dsdxi (const Scalar &uu, Scalar &resu) const
 Computes $\partial/ \partial \xi$ of a Scalar. More...
 
virtual void dsdradial (const Scalar &, Scalar &) const
 Computes $\partial/ \partial r$ of a Scalar. More...
 
virtual void srdsdt (const Scalar &uu, Scalar &resu) const
 Computes $1/r \partial/ \partial \theta$ of a Scalar. More...
 
virtual void srstdsdp (const Scalar &uu, Scalar &resu) const
 Computes $1/(r\sin\theta) \partial/ \partial \phi$ of a Scalar. More...
 
virtual void dsdt (const Scalar &uu, Scalar &resu) const
 Computes $\partial/ \partial \theta$ of a Scalar. More...
 
virtual void stdsdp (const Scalar &uu, Scalar &resu) const
 Computes $1/\sin\theta \partial/ \partial \varphi$ of a Scalar. More...
 
virtual void laplacien (const Scalar &uu, int zec_mult_r, Scalar &lap) const
 Computes the Laplacian of a scalar field. More...
 
virtual void laplacien (const Cmp &uu, int zec_mult_r, Cmp &lap) const
 Computes the Laplacian of a scalar field (Cmp version). More...
 
virtual void lapang (const Scalar &uu, Scalar &lap) const
 Computes the angular Laplacian of a scalar field. More...
 
virtual void primr (const Scalar &uu, Scalar &resu, bool null_infty) const
 Computes the radial primitive which vanishes for $r\to \infty$. More...
 
virtual Tblintegrale (const Cmp &) const
 Computes the integral over all space of a Cmp. More...
 
virtual void poisson (const Cmp &source, Param &par, Cmp &uu) const
 Computes the solution of a scalar Poisson equation. More...
 
virtual void poisson_tau (const Cmp &source, Param &par, Cmp &uu) const
 Computes the solution of a scalar Poisson equation using a Tau method. More...
 
virtual void poisson_falloff (const Cmp &source, Param &par, Cmp &uu, int k_falloff) const
 
virtual void poisson_ylm (const Cmp &source, Param &par, Cmp &pot, int nylm, double *intvec) const
 
virtual void poisson_regular (const Cmp &source, int k_div, int nzet, double unsgam1, Param &par, Cmp &uu, Cmp &uu_regu, Cmp &uu_div, Tenseur &duu_div, Cmp &source_regu, Cmp &source_div) const
 Computes the solution of a scalar Poisson equation. More...
 
virtual void poisson_angu (const Scalar &source, Param &par, Scalar &uu, double lambda=0) const
 Computes the solution of the generalized angular Poisson equation. More...
 
virtual void poisson_angu (const Cmp &source, Param &par, Cmp &uu, double lambda=0) const
 
virtual Paramdonne_para_poisson_vect (Param &par, int i) const
 Internal function intended to be used by Map::poisson_vect and Map::poisson_vect_oohara . More...
 
virtual void poisson_frontiere (const Cmp &, const Valeur &, int, int, Cmp &, double=0., double=0.) const
 Solver of the Poisson equation with boundary condition for the affine mapping case. More...
 
virtual void poisson_frontiere_double (const Cmp &source, const Valeur &lim_func, const Valeur &lim_der, int num_zone, Cmp &pot) const
 Solver of the Poisson equation with boundary condition for the affine mapping case, cases with boundary conditions of both Dirichlet and Neumann type (no condition imposed at infinity). More...
 
virtual void poisson_interne (const Cmp &source, const Valeur &limite, Param &par, Cmp &pot) const
 Computes the solution of a Poisson equation in the shell, imposing a boundary condition at the surface of the star. More...
 
double integrale_surface (const Cmp &ci, double rayon) const
 Performs the surface integration of ci on the sphere of radius rayon . More...
 
double integrale_surface (const Scalar &ci, double rayon) const
 Performs the surface integration of ci on the sphere of radius rayon . More...
 
double integrale_surface_falloff (const Cmp &ci) const
 
double integrale_surface_infini (const Cmp &ci) const
 Performs the surface integration of ci at infinity. More...
 
double integrale_surface_infini (const Scalar &ci) const
 Performs the surface integration of ci at infinity. More...
 
void sol_elliptic (Param_elliptic &params, const Scalar &so, Scalar &uu) const
 General elliptic solver. More...
 
void sol_elliptic_boundary (Param_elliptic &params, const Scalar &so, Scalar &uu, const Mtbl_cf &bound, double fact_dir, double fact_neu) const
 General elliptic solver including inner boundary conditions. More...
 
void sol_elliptic_boundary (Param_elliptic &params, const Scalar &so, Scalar &uu, const Scalar &bound, double fact_dir, double fact_neu) const
 General elliptic solver including inner boundary conditions, with boundary given as a Scalar on mono-domain angular grid. More...
 
void sol_elliptic_no_zec (Param_elliptic &params, const Scalar &so, Scalar &uu, double val) const
 General elliptic solver. More...
 
void sol_elliptic_only_zec (Param_elliptic &params, const Scalar &so, Scalar &uu, double val) const
 General elliptic solver. More...
 
void sol_elliptic_sin_zec (Param_elliptic &params, const Scalar &so, Scalar &uu, double *coefs, double *) const
 General elliptic solver. More...
 
void sol_elliptic_fixe_der_zero (double val, Param_elliptic &params, const Scalar &so, Scalar &uu) const
 General elliptic solver fixing the derivative at the origin and relaxing the continuity of the first derivative at the boundary between the nucleus and the first shell. More...
 
virtual void poisson2d (const Cmp &source_mat, const Cmp &source_quad, Param &par, Cmp &uu) const
 Computes the solution of a 2-D Poisson equation. More...
 
void sol_elliptic_2d (Param_elliptic &, const Scalar &, Scalar &) const
 General elliptic solver in a 2D case. More...
 
void sol_elliptic_pseudo_1d (Param_elliptic &, const Scalar &, Scalar &) const
 General elliptic solver in a pseudo 1d case. More...
 
virtual void dalembert (Param &par, Scalar &fJp1, const Scalar &fJ, const Scalar &fJm1, const Scalar &source) const
 Performs one time-step integration of the d'Alembert scalar equation. More...
 
Scalar interpolate_from_map_star (const Scalar &f_s) const
 Interpolates from a Scalar defined on a Map_star and returns the new Scalar defined on *this. More...
 
virtual void reevaluate (const Map *mp_prev, int nzet, Cmp &uu) const
 Recomputes the values of a Cmp at the collocation points after a change in the mapping. More...
 
virtual void reevaluate (const Map *mp_prev, int nzet, Scalar &uu) const
 Recomputes the values of a Scalar at the collocation points after a change in the mapping. More...
 
virtual void reevaluate_symy (const Map *mp_prev, int nzet, Cmp &uu) const
 Recomputes the values of a Cmp at the collocation points after a change in the mapping. More...
 
virtual void reevaluate_symy (const Map *mp_prev, int nzet, Scalar &uu) const
 Recomputes the values of a Scalar at the collocation points after a change in the mapping. More...
 
virtual void mult_r (Scalar &uu) const
 Multiplication by r of a Scalar, the dzpuis
of uu is not changed. More...
 
virtual void mult_r (Cmp &ci) const
 Multiplication by r of a Cmp. More...
 
virtual void mult_r_zec (Scalar &) const
 Multiplication by r (in the compactified external domain only) of a Scalar. More...
 
virtual void mult_rsint (Scalar &) const
 Multiplication by $r\sin\theta$ of a Scalar. More...
 
virtual void div_rsint (Scalar &) const
 Division by $r\sin\theta$ of a Scalar. More...
 
virtual void div_r (Scalar &) const
 Division by r of a Scalar. More...
 
virtual void div_r_zec (Scalar &) const
 Division by r (in the compactified external domain only) of a Scalar. More...
 
virtual void mult_cost (Scalar &) const
 Multiplication by $\cos\theta$ of a Scalar. More...
 
virtual void div_cost (Scalar &) const
 Division by $\cos\theta$ of a Scalar. More...
 
virtual void mult_sint (Scalar &) const
 Multiplication by $\sin\theta$ of a Scalar. More...
 
virtual void div_sint (Scalar &) const
 Division by $\sin\theta$ of a Scalar. More...
 
virtual void div_tant (Scalar &) const
 Division by $\tan\theta$ of a Scalar. More...
 
virtual void comp_x_from_spherical (const Scalar &v_r, const Scalar &v_theta, const Scalar &v_phi, Scalar &v_x) const
 Computes the Cartesian x component (with respect to bvect_cart) of a vector given by its spherical components with respect to bvect_spher. More...
 
virtual void comp_x_from_spherical (const Cmp &v_r, const Cmp &v_theta, const Cmp &v_phi, Cmp &v_x) const
 Cmp version More...
 
virtual void comp_y_from_spherical (const Scalar &v_r, const Scalar &v_theta, const Scalar &v_phi, Scalar &v_y) const
 Computes the Cartesian y component (with respect to bvect_cart ) of a vector given by its spherical components with respect to bvect_spher . More...
 
virtual void comp_y_from_spherical (const Cmp &v_r, const Cmp &v_theta, const Cmp &v_phi, Cmp &v_y) const
 Cmp version More...
 
virtual void comp_z_from_spherical (const Scalar &v_r, const Scalar &v_theta, Scalar &v_z) const
 Computes the Cartesian z component (with respect to bvect_cart ) of a vector given by its spherical components with respect to bvect_spher . More...
 
virtual void comp_z_from_spherical (const Cmp &v_r, const Cmp &v_theta, Cmp &v_z) const
 Cmp version More...
 
virtual void comp_r_from_cartesian (const Scalar &v_x, const Scalar &v_y, const Scalar &v_z, Scalar &v_r) const
 Computes the Spherical r component (with respect to bvect_spher ) of a vector given by its cartesian components with respect to bvect_cart . More...
 
virtual void comp_r_from_cartesian (const Cmp &v_x, const Cmp &v_y, const Cmp &v_z, Cmp &v_r) const
 Cmp version More...
 
virtual void comp_t_from_cartesian (const Scalar &v_x, const Scalar &v_y, const Scalar &v_z, Scalar &v_t) const
 Computes the Spherical $\theta$ component (with respect to bvect_spher ) of a vector given by its cartesian components with respect to bvect_cart . More...
 
virtual void comp_t_from_cartesian (const Cmp &v_x, const Cmp &v_y, const Cmp &v_z, Cmp &v_t) const
 Cmp version More...
 
virtual void comp_p_from_cartesian (const Scalar &v_x, const Scalar &v_y, Scalar &v_p) const
 Computes the Spherical $\phi$ component (with respect to bvect_spher ) of a vector given by its cartesian components with respect to bvect_cart . More...
 
virtual void comp_p_from_cartesian (const Cmp &v_x, const Cmp &v_y, Cmp &v_p) const
 Cmp version More...
 
virtual void dec_dzpuis (Scalar &) const
 Decreases by 1 the value of dzpuis of a Scalar and changes accordingly its values in the compactified external domain (CED). More...
 
virtual void dec2_dzpuis (Scalar &) const
 Decreases by 2 the value of dzpuis of a Scalar and changes accordingly its values in the
compactified external domain (CED). More...
 
virtual void inc_dzpuis (Scalar &) const
 Increases by 1 the value of dzpuis of a Scalar and changes accordingly its values in the
compactified external domain (CED). More...
 
virtual void inc2_dzpuis (Scalar &) const
 Increases by 2 the value of dzpuis of a Scalar and changes accordingly its values in the
compactified external domain (CED). More...
 
virtual void poisson_compact (const Cmp &source, const Cmp &aa, const Tenseur &bb, const Param &par, Cmp &psi) const
 Resolution of the elliptic equation $ a \Delta\psi + {\bf b} \cdot \nabla \psi = \sigma$ in the case where the stellar interior is covered by a single domain. More...
 
virtual void poisson_compact (int nzet, const Cmp &source, const Cmp &aa, const Tenseur &bb, const Param &par, Cmp &psi) const
 Resolution of the elliptic equation $ a \Delta\psi + {\bf b} \cdot \nabla \psi = \sigma$ in the case of a multidomain stellar interior. More...
 
const Mg3dget_mg () const
 Gives the Mg3d on which the mapping is defined. More...
 
double get_ori_x () const
 Returns the x coordinate of the origin. More...
 
double get_ori_y () const
 Returns the y coordinate of the origin. More...
 
double get_ori_z () const
 Returns the z coordinate of the origin. More...
 
double get_rot_phi () const
 Returns the angle between the x –axis and X –axis. More...
 
const Base_vect_spherget_bvect_spher () const
 Returns the orthonormal vectorial basis $(\partial/\partial r,1/r\partial/\partial \theta, 1/(r\sin\theta)\partial/\partial \phi)$ associated with the coordinates $(r, \theta, \phi)$ of the mapping. More...
 
const Base_vect_cartget_bvect_cart () const
 Returns the Cartesian basis $(\partial/\partial x,\partial/\partial y,\partial/\partial z)$ associated with the coordinates (x,y,z) of the mapping, i.e. More...
 
const Metric_flatflat_met_spher () const
 Returns the flat metric associated with the spherical coordinates and with components expressed in the triad bvect_spher. More...
 
const Metric_flatflat_met_cart () const
 Returns the flat metric associated with the Cartesian coordinates and with components expressed in the triad bvect_cart. More...
 
const Cmpcmp_zero () const
 Returns the null Cmp defined on *this. More...
 
void convert_absolute (double xx, double yy, double zz, double &rr, double &theta, double &pphi) const
 Determines the coordinates $(r,\theta,\phi)$ corresponding to given absolute Cartesian coordinates (X,Y,Z). More...
 
void set_ori (double xa0, double ya0, double za0)
 Sets a new origin. More...
 
void set_rot_phi (double phi0)
 Sets a new rotation angle. More...
 

Public Attributes

Coord xsr
 $\xi/R$ in the nucleus; \ 1/R in the non-compactified shells; \ $(\xi-1)/U$ in the compactified outer domain. More...
 
Coord dxdr
 $1/(\partial R/\partial\xi) = \partial \xi /\partial r$ in the nucleus and in the non-compactified shells; \ $-1/(\partial U/\partial\xi) = - \partial \xi /\partial u$ in the compactified outer domain. More...
 
Coord drdt
 $\partial R/\partial\theta'$ in the nucleus and in the non-compactified shells; \ $-\partial U/\partial\theta'$ in the compactified external domain (CED). More...
 
Coord stdrdp
 ${1\over\sin\theta} \partial R/\partial\varphi'$ in the nucleus and in the non-compactified shells; \ $-{1\over\sin\theta}\partial U/\partial\varphi'$ in the compactified external domain (CED). More...
 
Coord srdrdt
 $1/R \times (\partial R/\partial\theta')$ in the nucleus and in the non-compactified shells; \ $-1/U \times (\partial U/\partial\theta)$ in the compactified outer domain. More...
 
Coord srstdrdp
 $1/(R\sin\theta) \times (\partial R/\partial\varphi')$ in the nucleus and in the non-compactified shells; \ $-1/(U\sin\theta) \times (\partial U/\partial\varphi')$ in the compactified outer domain. More...
 
Coord sr2drdt
 $1/R^2 \times (\partial R/\partial\theta')$ in the nucleus and in the non-compactified shells; \ $-1/U^2 \times (\partial U/\partial\theta')$ in the compactified outer domain. More...
 
Coord sr2stdrdp
 $1/(R^2\sin\theta) \times (\partial R/\partial\varphi')$ in the nucleus and in the non-compactified shells; \ $-1/(U^2\sin\theta) \times (\partial U/\partial\varphi')$ in the compactified outer domain. More...
 
Coord d2rdx2
 $\partial^2 R/\partial\xi^2$ in the nucleus and in the non-compactified shells; \ $-\partial^2 U/\partial\xi^2 $ in the compactified outer domain. More...
 
Coord lapr_tp
 $1/R^2 \times [ 1/\sin(\theta)\times \partial /\partial\theta' (\sin\theta \partial R /\partial\theta') + 1/\sin^2\theta \partial^2 R /\partial{\varphi'}^2] $ in the nucleus and in the non-compactified shells; \ $- 1/U^2 \times [ 1/\sin(\theta)\times \partial /\partial\theta' (\sin\theta \partial U /\partial\theta') + 1/\sin^2\theta \partial^2 U /\partial{\varphi'}^2] $ in the compactified outer domain. More...
 
Coord d2rdtdx
 $\partial^2 R/\partial\xi\partial\theta'$ in the nucleus and in the non-compactified shells; \ $-\partial^2 U/\partial\xi\partial\theta'$ in the compactified outer domain. More...
 
Coord sstd2rdpdx
 $1/\sin\theta \times \partial^2 R/\partial\xi\partial\varphi'$ in the nucleus and in the non-compactified shells; \ $-1/\sin\theta \times \partial^2 U/\partial\xi\partial\varphi' $ in the compactified outer domain. More...
 
Coord sr2d2rdt2
 $1/R^2 \partial^2 R/\partial{\theta'}^2$ in the nucleus and in the non-compactified shells; \ $-1/U^2 \partial^2 U/\partial{\theta'}^2$ in the compactified outer domain. More...
 
Coord r
 r coordinate centered on the grid More...
 
Coord tet
 $\theta$ coordinate centered on the grid More...
 
Coord phi
 $\phi$ coordinate centered on the grid More...
 
Coord sint
 $\sin\theta$ More...
 
Coord cost
 $\cos\theta$ More...
 
Coord sinp
 $\sin\phi$ More...
 
Coord cosp
 $\cos\phi$ More...
 
Coord x
 x coordinate centered on the grid More...
 
Coord y
 y coordinate centered on the grid More...
 
Coord z
 z coordinate centered on the grid More...
 
Coord xa
 Absolute x coordinate. More...
 
Coord ya
 Absolute y coordinate. More...
 
Coord za
 Absolute z coordinate. More...
 

Protected Member Functions

virtual void reset_coord ()
 Resets all the member Coords. More...
 

Protected Attributes

const Mg3dmg
 Pointer on the multi-grid Mgd3 on which this is defined. More...
 
double ori_x
 Absolute coordinate x of the origin. More...
 
double ori_y
 Absolute coordinate y of the origin. More...
 
double ori_z
 Absolute coordinate z of the origin. More...
 
double rot_phi
 Angle between the x –axis and X –axis. More...
 
Base_vect_spher bvect_spher
 Orthonormal vectorial basis $(\partial/\partial r,1/r\partial/\partial \theta, 1/(r\sin\theta)\partial/\partial \phi)$ associated with the coordinates $(r, \theta, \phi)$ of the mapping. More...
 
Base_vect_cart bvect_cart
 Cartesian basis $(\partial/\partial x,\partial/\partial y,\partial/\partial z)$ associated with the coordinates (x,y,z) of the mapping, i.e. More...
 
Metric_flatp_flat_met_spher
 Pointer onto the flat metric associated with the spherical coordinates and with components expressed in the triad bvect_spher. More...
 
Metric_flatp_flat_met_cart
 Pointer onto the flat metric associated with the Cartesian coordinates and with components expressed in the triad bvect_cart. More...
 
Cmpp_cmp_zero
 The null Cmp. More...
 
Map_afp_mp_angu
 Pointer on the "angular" mapping. More...
 

Private Member Functions

void set_coord ()
 Assignment of the building functions to the member Coords. More...
 
virtual ostream & operator>> (ostream &) const
 Operator >> More...
 

Private Attributes

double * alpha
 Array (size: mg->nzone ) of the values of $\alpha$ in each domain. More...
 
double * beta
 Array (size: mg->nzone ) of the values of $\beta$ in each domain. More...
 

Friends

Mtblmap_af_fait_r (const Map *)
 
Mtblmap_af_fait_tet (const Map *)
 
Mtblmap_af_fait_phi (const Map *)
 
Mtblmap_af_fait_sint (const Map *)
 
Mtblmap_af_fait_cost (const Map *)
 
Mtblmap_af_fait_sinp (const Map *)
 
Mtblmap_af_fait_cosp (const Map *)
 
Mtblmap_af_fait_x (const Map *)
 
Mtblmap_af_fait_y (const Map *)
 
Mtblmap_af_fait_z (const Map *)
 
Mtblmap_af_fait_xa (const Map *)
 
Mtblmap_af_fait_ya (const Map *)
 
Mtblmap_af_fait_za (const Map *)
 
Mtblmap_af_fait_xsr (const Map *)
 
Mtblmap_af_fait_dxdr (const Map *)
 
Mtblmap_af_fait_drdt (const Map *)
 
Mtblmap_af_fait_stdrdp (const Map *)
 
Mtblmap_af_fait_srdrdt (const Map *)
 
Mtblmap_af_fait_srstdrdp (const Map *)
 
Mtblmap_af_fait_sr2drdt (const Map *)
 
Mtblmap_af_fait_sr2stdrdp (const Map *)
 
Mtblmap_af_fait_d2rdx2 (const Map *)
 
Mtblmap_af_fait_lapr_tp (const Map *)
 
Mtblmap_af_fait_d2rdtdx (const Map *)
 
Mtblmap_af_fait_sstd2rdpdx (const Map *)
 
Mtblmap_af_fait_sr2d2rdt2 (const Map *)
 

Detailed Description

Affine radial mapping.

()

The affine radial mapping is the simplest one between the grid coordinates $(\xi, \theta', \phi')$ and the physical coordinates $(r, \theta, \phi)$. It is defined by $\theta=\theta'$, $\phi=\phi'$ and

  • $r=\alpha \xi + \beta$, in non-compactified domains,
  • $ u={1\over r} = \alpha \xi + \beta$ in the (usually outermost) compactified domain, where $\alpha$ and $\beta$ are constant in each domain.

Definition at line 2048 of file map.h.

Constructor & Destructor Documentation

◆ Map_af() [1/6]

Lorene::Map_af::Map_af ( const Mg3d mgrille,
const double *  r_limits 
)

Standard Constructor.

Parameters
mgrille[input] Multi-domain grid on which the mapping is defined
r_limits[input] Array (size: number of domains + 1) of the value of r at the boundaries of the various domains :
  • r_limits[l] : inner boundary of the domain no. l
  • r_limits[l+1] : outer boundary of the domain no. l

Definition at line 216 of file map_af.C.

References alpha, beta, Lorene::Mg3d::get_nzone(), Lorene::Mg3d::get_type_r(), Lorene::Map::mg, and set_coord().

◆ Map_af() [2/6]

Lorene::Map_af::Map_af ( const Mg3d mgrille,
const Tbl r_limits 
)

Standard Constructor with Tbl.

Parameters
mgrille[input] Multi-domain grid on which the mapping is defined
r_limits[input] Array (size: number of domains) of the value of r at the boundaries of the various domains :
  • r_limits[l] : inner boundary of the domain no. l
  • r_limits[l+1] : outer boundary of the domain no. l except in the last domain The last boundary is set to inifnity if the grid contains a compactified domain.

Definition at line 261 of file map_af.C.

References alpha, beta, Lorene::Mg3d::get_nzone(), Lorene::Mg3d::get_type_r(), Lorene::Map::mg, and set_coord().

◆ Map_af() [3/6]

Lorene::Map_af::Map_af ( const Map_af mp)

Copy constructor.

Definition at line 307 of file map_af.C.

References alpha, beta, Lorene::Mg3d::get_nzone(), Lorene::Map::mg, and set_coord().

◆ Map_af() [4/6]

Lorene::Map_af::Map_af ( const Mg3d mgrille,
const string &  filename 
)

◆ Map_af() [5/6]

Lorene::Map_af::Map_af ( const Mg3d mgi,
FILE *  fd 
)

Constructor from a file (see sauve(FILE*) )

Definition at line 431 of file map_af.C.

References alpha, beta, Lorene::fread_be(), Lorene::Mg3d::get_nzone(), Lorene::Map::mg, and set_coord().

◆ Map_af() [6/6]

Lorene::Map_af::Map_af ( const Map mpi)
explicit

Constructor from a general mapping.

If the input mapping belongs to the class Map_af , this constructor does the same job as the copy constructor Map_af(const Map_af& ) .

If the input mapping belongs to the class Map_et , this constructor sets in each domain, the values of $\alpha$ and $\beta$ to those of the Map_et .

Definition at line 447 of file map_af.C.

References alpha, beta, get_alpha(), Lorene::Map_et::get_alpha(), get_beta(), Lorene::Map_et::get_beta(), Lorene::Mg3d::get_nzone(), Lorene::Map::get_ori_x(), Lorene::Map::get_ori_y(), Lorene::Map::get_ori_z(), Lorene::Map::get_rot_phi(), Lorene::Map::mg, set_coord(), Lorene::Map::set_ori(), and Lorene::Map::set_rot_phi().

◆ ~Map_af()

Lorene::Map_af::~Map_af ( )
virtual

Destructor.

Definition at line 498 of file map_af.C.

References alpha, and beta.

Member Function Documentation

◆ adapt()

void Lorene::Map_af::adapt ( const Cmp ent,
const Param par,
int  nbr = 0 
)
virtual

Adaptation of the mapping to a given scalar field.

Implements Lorene::Map.

Definition at line 803 of file map_af.C.

References Lorene::c_est_pas_fait().

◆ cmp_zero()

const Cmp& Lorene::Map::cmp_zero ( ) const
inlineinherited

Returns the null Cmp defined on *this.

To be used by the Tenseur class when necessary to return a null Cmp .

Definition at line 825 of file map.h.

References Lorene::Map::p_cmp_zero.

◆ comp_p_from_cartesian() [1/2]

void Lorene::Map_radial::comp_p_from_cartesian ( const Scalar v_x,
const Scalar v_y,
Scalar v_p 
) const
virtualinherited

Computes the Spherical $\phi$ component (with respect to bvect_spher ) of a vector given by its cartesian components with respect to bvect_cart .

Parameters
v_x[input] x-component of the vector
v_y[input] y-component of the vector
v_p[output] $\phi$-component of the vector

Implements Lorene::Map.

Definition at line 186 of file map_radial_comp_rtp.C.

References Lorene::Scalar::get_etat().

◆ comp_p_from_cartesian() [2/2]

void Lorene::Map_radial::comp_p_from_cartesian ( const Cmp v_x,
const Cmp v_y,
Cmp v_p 
) const
virtualinherited

Cmp version

Implements Lorene::Map.

Definition at line 179 of file map_radial_comp_rtp.C.

References Lorene::Map_radial::comp_p_from_cartesian().

◆ comp_r_from_cartesian() [1/2]

void Lorene::Map_radial::comp_r_from_cartesian ( const Scalar v_x,
const Scalar v_y,
const Scalar v_z,
Scalar v_r 
) const
virtualinherited

Computes the Spherical r component (with respect to bvect_spher ) of a vector given by its cartesian components with respect to bvect_cart .

Parameters
v_x[input] x-component of the vector
v_y[input] y-component of the vector
v_z[input] z-component of the vector
v_r[output] r -component of the vector

Implements Lorene::Map.

Definition at line 75 of file map_radial_comp_rtp.C.

References Lorene::Scalar::get_etat().

◆ comp_r_from_cartesian() [2/2]

void Lorene::Map_radial::comp_r_from_cartesian ( const Cmp v_x,
const Cmp v_y,
const Cmp v_z,
Cmp v_r 
) const
virtualinherited

Cmp version

Implements Lorene::Map.

Definition at line 68 of file map_radial_comp_rtp.C.

References Lorene::Map_radial::comp_r_from_cartesian().

◆ comp_t_from_cartesian() [1/2]

void Lorene::Map_radial::comp_t_from_cartesian ( const Scalar v_x,
const Scalar v_y,
const Scalar v_z,
Scalar v_t 
) const
virtualinherited

Computes the Spherical $\theta$ component (with respect to bvect_spher ) of a vector given by its cartesian components with respect to bvect_cart .

Parameters
v_x[input] x-component of the vector
v_y[input] y-component of the vector
v_z[input] z-component of the vector
v_t[output] $\theta$-component of the vector

Implements Lorene::Map.

Definition at line 131 of file map_radial_comp_rtp.C.

References Lorene::Scalar::get_etat().

◆ comp_t_from_cartesian() [2/2]

void Lorene::Map_radial::comp_t_from_cartesian ( const Cmp v_x,
const Cmp v_y,
const Cmp v_z,
Cmp v_t 
) const
virtualinherited

Cmp version

Implements Lorene::Map.

Definition at line 124 of file map_radial_comp_rtp.C.

References Lorene::Map_radial::comp_t_from_cartesian().

◆ comp_x_from_spherical() [1/2]

void Lorene::Map_radial::comp_x_from_spherical ( const Scalar v_r,
const Scalar v_theta,
const Scalar v_phi,
Scalar v_x 
) const
virtualinherited

Computes the Cartesian x component (with respect to bvect_cart) of a vector given by its spherical components with respect to bvect_spher.

Parameters
v_r[input] r -component of the vector
v_theta[input] $\theta$-component of the vector
v_phi[input] $\phi$-component of the vector
v_x[output] x-component of the vector

Implements Lorene::Map.

Definition at line 79 of file map_radial_comp_xyz.C.

References Lorene::Scalar::get_etat().

◆ comp_x_from_spherical() [2/2]

void Lorene::Map_radial::comp_x_from_spherical ( const Cmp v_r,
const Cmp v_theta,
const Cmp v_phi,
Cmp v_x 
) const
virtualinherited

Cmp version

Implements Lorene::Map.

Definition at line 71 of file map_radial_comp_xyz.C.

References Lorene::Map_radial::comp_x_from_spherical().

◆ comp_y_from_spherical() [1/2]

void Lorene::Map_radial::comp_y_from_spherical ( const Scalar v_r,
const Scalar v_theta,
const Scalar v_phi,
Scalar v_y 
) const
virtualinherited

Computes the Cartesian y component (with respect to bvect_cart ) of a vector given by its spherical components with respect to bvect_spher .

Parameters
v_r[input] r -component of the vector
v_theta[input] $\theta$-component of the vector
v_phi[input] $\phi$-component of the vector
v_y[output] y-component of the vector

Implements Lorene::Map.

Definition at line 138 of file map_radial_comp_xyz.C.

References Lorene::Scalar::get_etat().

◆ comp_y_from_spherical() [2/2]

void Lorene::Map_radial::comp_y_from_spherical ( const Cmp v_r,
const Cmp v_theta,
const Cmp v_phi,
Cmp v_y 
) const
virtualinherited

Cmp version

Implements Lorene::Map.

Definition at line 129 of file map_radial_comp_xyz.C.

References Lorene::Map_radial::comp_y_from_spherical().

◆ comp_z_from_spherical() [1/2]

void Lorene::Map_radial::comp_z_from_spherical ( const Scalar v_r,
const Scalar v_theta,
Scalar v_z 
) const
virtualinherited

Computes the Cartesian z component (with respect to bvect_cart ) of a vector given by its spherical components with respect to bvect_spher .

Parameters
v_r[input] r -component of the vector
v_theta[input] $\theta$-component of the vector
v_z[output] z-component of the vector

Implements Lorene::Map.

Definition at line 195 of file map_radial_comp_xyz.C.

References Lorene::Scalar::get_etat().

◆ comp_z_from_spherical() [2/2]

void Lorene::Map_radial::comp_z_from_spherical ( const Cmp v_r,
const Cmp v_theta,
Cmp v_z 
) const
virtualinherited

Cmp version

Implements Lorene::Map.

Definition at line 187 of file map_radial_comp_xyz.C.

References Lorene::Map_radial::comp_z_from_spherical().

◆ convert_absolute()

void Lorene::Map::convert_absolute ( double  xx,
double  yy,
double  zz,
double &  rr,
double &  theta,
double &  pphi 
) const
inherited

Determines the coordinates $(r,\theta,\phi)$ corresponding to given absolute Cartesian coordinates (X,Y,Z).

Parameters
xx[input] value of the coordinate x (absolute frame)
yy[input] value of the coordinate y (absolute frame)
zz[input] value of the coordinate z (absolute frame)
rr[output] value of r
theta[output] value of $\theta$
pphi[output] value of $\phi$

Definition at line 305 of file map.C.

References Lorene::Map::ori_x, Lorene::Map::ori_y, Lorene::Map::ori_z, Lorene::Map::rot_phi, and Lorene::sqrt().

◆ dalembert()

void Lorene::Map_af::dalembert ( Param par,
Scalar fJp1,
const Scalar fJ,
const Scalar fJm1,
const Scalar source 
) const
virtual

Performs one time-step integration of the d'Alembert scalar equation.

Parameters
par[input/output] possible parameters to control the resolution of the d'Alembert equation: \ par.get_double(0) : [input] the time step dt ,\ par.get_int(0) : [input] the type of boundary conditions set at the outer boundary (0 : reflexion, 1 : Sommerfeld outgoing wave, valid only for l=0 components, 2 : Bayliss & Turkel outgoing wave, valid for l=0, 1, 2 components)\ par.get_int_mod(0) : [input/output] set to 0 at first call, is used as a working flag after (must not be modified after first call)\ par.get_int(1) : [input] (optional) if present, a shift of -1 is done in the multipolar spectrum in terms of $\ell$. The value of this variable gives the minimal value of (the shifted) $\ell$ for which the wave equation is solved.\ par.get_tensor_mod(0) : [input] (optional) if the wave equation is on a curved space-time, this is the potential in front of the Laplace operator. It has to be updated at every time-step (for a potential depending on time).\ Note: there are many other working objects attached to this Param , so one should not modify it.
fJp1[output] solution $f^{J+1}$ at time J+1 with boundary conditions defined by par.get_int(0)
fJ[input] solution $f^J$ at time J
fJm1[input] solution $f^{J-1}$ at time J-1
source[input] source $\sigma$ of the d'Alembert equation $\diamond u = \sigma$.

!!

Implements Lorene::Map.

Definition at line 125 of file map_af_dalembert.C.

References Lorene::Scalar::get_etat().

◆ dec2_dzpuis()

void Lorene::Map_radial::dec2_dzpuis ( Scalar ci) const
virtualinherited

Decreases by 2 the value of dzpuis of a Scalar and changes accordingly its values in the
compactified external domain (CED).

Implements Lorene::Map.

Definition at line 751 of file map_radial_r_manip.C.

References Lorene::Scalar::get_etat().

◆ dec_dzpuis()

void Lorene::Map_radial::dec_dzpuis ( Scalar ci) const
virtualinherited

Decreases by 1 the value of dzpuis of a Scalar and changes accordingly its values in the compactified external domain (CED).

Implements Lorene::Map.

Definition at line 646 of file map_radial_r_manip.C.

References Lorene::Scalar::get_etat().

◆ div_cost()

void Lorene::Map_radial::div_cost ( Scalar ci) const
virtualinherited

Division by $\cos\theta$ of a Scalar.

Implements Lorene::Map.

Definition at line 88 of file map_radial_th_manip.C.

References Lorene::Scalar::get_etat().

◆ div_r()

void Lorene::Map_radial::div_r ( Scalar ci) const
virtualinherited

Division by r of a Scalar.

Implements Lorene::Map.

Definition at line 517 of file map_radial_r_manip.C.

References Lorene::Scalar::get_etat().

◆ div_r_zec()

void Lorene::Map_radial::div_r_zec ( Scalar uu) const
virtualinherited

Division by r (in the compactified external domain only) of a Scalar.

Implements Lorene::Map.

Definition at line 588 of file map_radial_r_manip.C.

References Lorene::Scalar::get_etat().

◆ div_rsint()

void Lorene::Map_radial::div_rsint ( Scalar ci) const
virtualinherited

Division by $r\sin\theta$ of a Scalar.

Implements Lorene::Map.

Definition at line 437 of file map_radial_r_manip.C.

References Lorene::Scalar::get_etat().

◆ div_sint()

void Lorene::Map_radial::div_sint ( Scalar ci) const
virtualinherited

Division by $\sin\theta$ of a Scalar.

Implements Lorene::Map.

Definition at line 136 of file map_radial_th_manip.C.

References Lorene::Scalar::get_etat().

◆ div_tant()

void Lorene::Map_radial::div_tant ( Scalar ci) const
virtualinherited

Division by $\tan\theta$ of a Scalar.

Implements Lorene::Map.

Definition at line 161 of file map_radial_th_manip.C.

References Lorene::Scalar::get_etat().

◆ donne_para_poisson_vect()

Param * Lorene::Map_af::donne_para_poisson_vect ( Param par,
int  i 
) const
virtual

Internal function intended to be used by Map::poisson_vect and Map::poisson_vect_oohara .

It constructs the sets of parameters used for each scalar Poisson equation from the one for the vectorial one.

In the case of a Map_af the result is not used and the function only returns & par .

Implements Lorene::Map.

Definition at line 73 of file map_poisson_vect.C.

◆ dsdr() [1/2]

void Lorene::Map_af::dsdr ( const Cmp ci,
Cmp resu 
) const
virtual

Computes $\partial/ \partial r$ of a Cmp.

Note that in the compactified external domain (CED), it computes $-\partial/ \partial u = r^2 \partial/ \partial r$.

Parameters
ci[input] field to consider
resu[output] derivative of ci

Implements Lorene::Map.

Definition at line 282 of file map_af_deriv.C.

References Lorene::Cmp::get_etat().

◆ dsdr() [2/2]

void Lorene::Map_af::dsdr ( const Scalar uu,
Scalar resu 
) const
virtual

Computes $\partial/ \partial r$ of a Scalar.

Note that in the compactified external domain (CED), the dzpuis flag of the output is 2 if the input has dzpuis = 0, and is increased by 1 in other cases.

Parameters
uu[input] field to consider
resu[output] derivative of uu

Implements Lorene::Map.

Definition at line 366 of file map_af_deriv.C.

References Lorene::Scalar::get_etat().

◆ dsdradial()

void Lorene::Map_af::dsdradial ( const Scalar uu,
Scalar resu 
) const
virtual

Computes $\partial/ \partial r$ of a Scalar.

Note that in the compactified external domain (CED), the dzpuis flag of the output is 2 if the input has dzpuis = 0, and is increased by 1 in other cases.

Parameters
uu[input] field to consider
resu[output] derivative of uu

Implements Lorene::Map.

Definition at line 420 of file map_af_deriv.C.

References Lorene::Scalar::get_etat().

◆ dsdt()

void Lorene::Map_af::dsdt ( const Scalar uu,
Scalar resu 
) const
virtual

Computes $\partial/ \partial \theta$ of a Scalar.

Parameters
uu[input] scalar field
resu[output] derivative of uu

Implements Lorene::Map.

Definition at line 800 of file map_af_deriv.C.

References Lorene::Scalar::get_etat().

◆ dsdxi() [1/2]

void Lorene::Map_af::dsdxi ( const Cmp ci,
Cmp resu 
) const
virtual

Computes $\partial/ \partial \xi$ of a Cmp.

Note that in the compactified external domain (CED), it computes $-\partial/ \partial u = \xi^2 \partial/ \partial \xi$.

Parameters
ci[input] field to consider
resu[output] derivative of ci

Implements Lorene::Map.

Definition at line 139 of file map_af_deriv.C.

References Lorene::Cmp::get_etat().

◆ dsdxi() [2/2]

void Lorene::Map_af::dsdxi ( const Scalar uu,
Scalar resu 
) const
virtual

Computes $\partial/ \partial \xi$ of a Scalar.

Note that in the compactified external domain (CED), the dzpuis flag of the output is 2 if the input has dzpuis = 0, and is increased by 1 in other cases.

Parameters
uu[input] field to consider
resu[output] derivative of uu

Implements Lorene::Map.

Definition at line 223 of file map_af_deriv.C.

References Lorene::Scalar::get_etat().

◆ flat_met_cart()

const Metric_flat & Lorene::Map::flat_met_cart ( ) const
inherited

Returns the flat metric associated with the Cartesian coordinates and with components expressed in the triad bvect_cart.

Definition at line 334 of file map.C.

References Lorene::Map::bvect_cart, and Lorene::Map::p_flat_met_cart.

◆ flat_met_spher()

const Metric_flat & Lorene::Map::flat_met_spher ( ) const
inherited

Returns the flat metric associated with the spherical coordinates and with components expressed in the triad bvect_spher.

Definition at line 324 of file map.C.

References Lorene::Map::bvect_spher, and Lorene::Map::p_flat_met_spher.

◆ get_alpha()

const double * Lorene::Map_af::get_alpha ( ) const

Returns the pointer on the array alpha.

Definition at line 607 of file map_af.C.

References alpha.

◆ get_beta()

const double * Lorene::Map_af::get_beta ( ) const

Returns the pointer on the array beta.

Definition at line 611 of file map_af.C.

References beta.

◆ get_bvect_cart()

const Base_vect_cart& Lorene::Map::get_bvect_cart ( ) const
inlineinherited

Returns the Cartesian basis $(\partial/\partial x,\partial/\partial y,\partial/\partial z)$ associated with the coordinates (x,y,z) of the mapping, i.e.

the Cartesian coordinates related to $(r, \theta, \phi)$ by means of usual formulae.

Definition at line 809 of file map.h.

References Lorene::Map::bvect_cart.

◆ get_bvect_spher()

const Base_vect_spher& Lorene::Map::get_bvect_spher ( ) const
inlineinherited

Returns the orthonormal vectorial basis $(\partial/\partial r,1/r\partial/\partial \theta, 1/(r\sin\theta)\partial/\partial \phi)$ associated with the coordinates $(r, \theta, \phi)$ of the mapping.

Definition at line 801 of file map.h.

References Lorene::Map::bvect_spher.

◆ get_mg()

const Mg3d* Lorene::Map::get_mg ( ) const
inlineinherited

Gives the Mg3d on which the mapping is defined.

Definition at line 783 of file map.h.

References Lorene::Map::mg.

◆ get_ori_x()

double Lorene::Map::get_ori_x ( ) const
inlineinherited

Returns the x coordinate of the origin.

Definition at line 786 of file map.h.

References Lorene::Map::ori_x.

◆ get_ori_y()

double Lorene::Map::get_ori_y ( ) const
inlineinherited

Returns the y coordinate of the origin.

Definition at line 788 of file map.h.

References Lorene::Map::ori_y.

◆ get_ori_z()

double Lorene::Map::get_ori_z ( ) const
inlineinherited

Returns the z coordinate of the origin.

Definition at line 790 of file map.h.

References Lorene::Map::ori_z.

◆ get_rot_phi()

double Lorene::Map::get_rot_phi ( ) const
inlineinherited

Returns the angle between the x –axis and X –axis.

Definition at line 793 of file map.h.

References Lorene::Map::rot_phi.

◆ homothetie()

void Lorene::Map_af::homothetie ( double  lambda)
virtual

Sets a new radial scale.

Parameters
lambda[input] factor by which the value of r is to be multiplied

Implements Lorene::Map.

Definition at line 667 of file map_af.C.

References Lorene::Mg3d::get_nzone(), Lorene::Mg3d::get_type_r(), and Lorene::Map::mg.

◆ homothetie_interne()

void Lorene::Map_af::homothetie_interne ( double  lambda)

Sets a new radial scale at the bondary between the nucleus and the first shell.

Parameters
lambda[input] factor by which the value of r is to be multiplied

Definition at line 744 of file map_af.C.

References alpha, beta, and Lorene::Map_radial::reset_coord().

◆ inc2_dzpuis()

void Lorene::Map_radial::inc2_dzpuis ( Scalar ci) const
virtualinherited

Increases by 2 the value of dzpuis of a Scalar and changes accordingly its values in the
compactified external domain (CED).

Implements Lorene::Map.

Definition at line 802 of file map_radial_r_manip.C.

References Lorene::Scalar::get_etat().

◆ inc_dzpuis()

void Lorene::Map_radial::inc_dzpuis ( Scalar ci) const
virtualinherited

Increases by 1 the value of dzpuis of a Scalar and changes accordingly its values in the
compactified external domain (CED).

Implements Lorene::Map.

Definition at line 699 of file map_radial_r_manip.C.

References Lorene::Scalar::get_etat().

◆ integrale()

Tbl * Lorene::Map_af::integrale ( const Cmp ci) const
virtual

Computes the integral over all space of a Cmp.

The computed quantity is $\int u \, r^2 \sin\theta \, dr\, d\theta \, d\phi$. The routine allocates a Tbl (size: mg->nzone ) to store the result (partial integral) in each domain and returns a pointer to it.

Implements Lorene::Map.

Definition at line 84 of file map_af_integ.C.

References Lorene::Cmp::get_etat().

◆ integrale_surface() [1/2]

double Lorene::Map_af::integrale_surface ( const Cmp ci,
double  rayon 
) const

Performs the surface integration of ci on the sphere of radius rayon .

Definition at line 99 of file map_af_integ_surf.C.

References Lorene::Cmp::get_etat().

◆ integrale_surface() [2/2]

double Lorene::Map_af::integrale_surface ( const Scalar ci,
double  rayon 
) const

Performs the surface integration of ci on the sphere of radius rayon .

Definition at line 295 of file map_af_integ_surf.C.

References Lorene::Scalar::get_etat().

◆ integrale_surface_infini() [1/2]

double Lorene::Map_af::integrale_surface_infini ( const Cmp ci) const

Performs the surface integration of ci at infinity.

ci must have dzpuis =2.

Definition at line 214 of file map_af_integ_surf.C.

References Lorene::Cmp::get_etat().

◆ integrale_surface_infini() [2/2]

double Lorene::Map_af::integrale_surface_infini ( const Scalar ci) const

Performs the surface integration of ci at infinity.

ci must have dzpuis =2.

Definition at line 412 of file map_af_integ_surf.C.

References Lorene::Scalar::get_etat().

◆ interpolate_from_map_star()

Scalar Map_af::interpolate_from_map_star ( const Scalar f_s) const

Interpolates from a Scalar defined on a Map_star and returns the new Scalar defined on *this.

Parameters
f_s[input] the field to be interpolated (must be defined on a Map_star)
Returns
the interpolated field (Scalar defined on *this)

Definition at line 179 of file map_interp_af_and_star.C.

References Lorene::Mg3d::get_type_t(), and Lorene::Map::mg.

◆ lapang()

void Lorene::Map_af::lapang ( const Scalar uu,
Scalar lap 
) const
virtual

Computes the angular Laplacian of a scalar field.

Parameters
uu[input] Scalar field u (represented as a Scalar) the Laplacian $\Delta u$ of which is to be computed
lap[output] Angular Laplacian of u (see documentation of Scalar

Implements Lorene::Map.

Definition at line 552 of file map_af_lap.C.

References Lorene::Scalar::get_etat().

◆ laplacien() [1/2]

void Lorene::Map_af::laplacien ( const Scalar uu,
int  zec_mult_r,
Scalar lap 
) const
virtual

Computes the Laplacian of a scalar field.

Parameters
uu[input] Scalar field u (represented as a Scalar ) the Laplacian $\Delta u$ of which is to be computed
zec_mult_r[input] Determines the quantity computed in the compactified external domain (CED) : \ zec_mult_r = 0 : $\Delta u$ \ zec_mult_r = 2 : $r^2 \, \Delta u$ \ zec_mult_r = 4 (default) : $r^4 \, \Delta u$
lap[output] Laplacian of u

Implements Lorene::Map.

Definition at line 182 of file map_af_lap.C.

References Lorene::Scalar::get_etat().

◆ laplacien() [2/2]

void Lorene::Map_af::laplacien ( const Cmp uu,
int  zec_mult_r,
Cmp lap 
) const
virtual

Computes the Laplacian of a scalar field (Cmp version).

Implements Lorene::Map.

Definition at line 370 of file map_af_lap.C.

References Lorene::Cmp::get_etat().

◆ mp_angu()

const Map_af & Lorene::Map_af::mp_angu ( int  l_zone) const
virtual

Returns the "angular" mapping for the outside of domain l_zone.

Valid only for the class Map_af.

Implements Lorene::Map.

Definition at line 786 of file map_af.C.

References Lorene::Mg3d::get_angu_1dom(), Lorene::Map::get_mg(), Map_af(), Lorene::Map::p_mp_angu, Lorene::Tbl::set(), Lorene::Tbl::set_etat_qcq(), and val_r_jk().

◆ mult_cost()

void Lorene::Map_radial::mult_cost ( Scalar ci) const
virtualinherited

Multiplication by $\cos\theta$ of a Scalar.

Implements Lorene::Map.

Definition at line 64 of file map_radial_th_manip.C.

References Lorene::Scalar::get_etat().

◆ mult_r() [1/2]

void Lorene::Map_radial::mult_r ( Scalar uu) const
virtualinherited

Multiplication by r of a Scalar, the dzpuis
of uu is not changed.

Implements Lorene::Map.

Definition at line 147 of file map_radial_r_manip.C.

References Lorene::Scalar::get_etat().

◆ mult_r() [2/2]

void Lorene::Map_radial::mult_r ( Cmp ci) const
virtualinherited

Multiplication by r of a Cmp.

In the CED, there is only a decrement of dzpuis

Implements Lorene::Map.

Definition at line 222 of file map_radial_r_manip.C.

References Lorene::Cmp::get_etat().

◆ mult_r_zec()

void Lorene::Map_radial::mult_r_zec ( Scalar ci) const
virtualinherited

Multiplication by r (in the compactified external domain only) of a Scalar.

Implements Lorene::Map.

Definition at line 299 of file map_radial_r_manip.C.

References Lorene::Scalar::get_etat().

◆ mult_rsint()

void Lorene::Map_radial::mult_rsint ( Scalar ci) const
virtualinherited

Multiplication by $r\sin\theta$ of a Scalar.

Implements Lorene::Map.

Definition at line 358 of file map_radial_r_manip.C.

References Lorene::Scalar::get_etat().

◆ mult_sint()

void Lorene::Map_radial::mult_sint ( Scalar ci) const
virtualinherited

Multiplication by $\sin\theta$ of a Scalar.

Implements Lorene::Map.

Definition at line 112 of file map_radial_th_manip.C.

References Lorene::Scalar::get_etat().

◆ operator=()

void Lorene::Map_af::operator= ( const Map_af mpi)
virtual

◆ operator==()

◆ operator>>()

ostream & Lorene::Map_af::operator>> ( ostream &  ost) const
privatevirtual

Operator >>

Implements Lorene::Map.

Definition at line 633 of file map_af.C.

References alpha, beta, Lorene::Mg3d::get_nr(), Lorene::Mg3d::get_nzone(), Lorene::Map::mg, Lorene::Map::r, and val_r().

◆ poisson()

void Lorene::Map_af::poisson ( const Cmp source,
Param par,
Cmp uu 
) const
virtual

Computes the solution of a scalar Poisson equation.

Parameters
source[input] source $\sigma$ of the Poisson equation $\Delta u = \sigma$.
par[] not used by this Map_af version.
uu[output] solution u with the boundary condition u =0 at spatial infinity.

Implements Lorene::Map.

Definition at line 103 of file map_af_poisson.C.

References Lorene::Cmp::get_etat().

◆ poisson2d()

void Lorene::Map_af::poisson2d ( const Cmp source_mat,
const Cmp source_quad,
Param par,
Cmp uu 
) const
virtual

Computes the solution of a 2-D Poisson equation.

The 2-D Poisson equation writes

\[ {\partial^2 u\over\partial r^2} + {1\over r} {\partial u \over \partial r} + {1\over r^2} {\partial^2 u\over\partial \theta^2} = \sigma \ . \]

Parameters
source_mat[input] Compactly supported part of the source $\sigma$ of the 2-D Poisson equation (typically matter terms)
source_quad[input] Non-compactly supported part of the source $\sigma$ of the 2-D Poisson equation (typically quadratic terms)
par[output] Parameter which contains the constant $\lambda$ used to fulfill the virial identity GRV2 : \ par.get_double_mod(0) : [output] constant lambda such that the source of the equation effectively solved is source_mat + lambda * source_quad .
uu[input/output] solution u with the boundary condition u =0 at spatial infinity.

Implements Lorene::Map.

Definition at line 84 of file map_af_poisson2d.C.

References Lorene::Cmp::get_etat().

◆ poisson_angu()

void Lorene::Map_af::poisson_angu ( const Scalar source,
Param par,
Scalar uu,
double  lambda = 0 
) const
virtual

Computes the solution of the generalized angular Poisson equation.

The generalized angular Poisson equation is $\Delta_{\theta\varphi} u + \lambda u = \sigma$, where $\Delta_{\theta\varphi} u := \frac{\partial^2 u} {\partial \theta^2} + \frac{1}{\tan \theta} \frac{\partial u} {\partial \theta} +\frac{1}{\sin^2 \theta}\frac{\partial^2 u} {\partial \varphi^2}$.

Parameters
source[input] source $\sigma$ of the equation $\Delta_{\theta\varphi} u + \lambda u = \sigma$.
par[input/output] possible parameters to control the resolution of the Poisson equation. See the actual implementation in the derived class of Map for documentation.
uu[input/output] solution u
lambda[input] coefficient $\lambda$ in the above equation (default value = 0)

Implements Lorene::Map.

Definition at line 64 of file map_af_poisson_angu.C.

References Lorene::Scalar::get_etat().

◆ poisson_compact() [1/2]

void Lorene::Map_radial::poisson_compact ( const Cmp source,
const Cmp aa,
const Tenseur bb,
const Param par,
Cmp psi 
) const
virtualinherited

Resolution of the elliptic equation $ a \Delta\psi + {\bf b} \cdot \nabla \psi = \sigma$ in the case where the stellar interior is covered by a single domain.

Parameters
source[input] source $\sigma$ of the above equation
aa[input] factor a in the above equation
bb[input] vector b in the above equation
par[input/output] parameters of the iterative method of resolution : \ par.get_int(0) : [input] maximum number of iterations \ par.get_double(0) : [input] required precision: the iterative method is stopped as soon as the relative difference between $\psi^J$ and $\psi^{J-1}$ is greater than par.get_double(0) \ par.get_double(1) : [input] relaxation parameter $\lambda$ \ par.get_int_mod(0) : [output] number of iterations actually used to get the solution.
psi[input/output]: input : previously computed value of $\psi$ to start the iteration (if nothing is known a priori, psi must be set to zero); output: solution $\psi$ which satisfies $\psi(0)=0$.

Implements Lorene::Map.

Definition at line 158 of file map_radial_poisson_cpt.C.

References Lorene::Cmp::get_etat().

◆ poisson_compact() [2/2]

void Lorene::Map_radial::poisson_compact ( int  nzet,
const Cmp source,
const Cmp aa,
const Tenseur bb,
const Param par,
Cmp psi 
) const
virtualinherited

Resolution of the elliptic equation $ a \Delta\psi + {\bf b} \cdot \nabla \psi = \sigma$ in the case of a multidomain stellar interior.

Parameters
nzet[input] number of domains covering the stellar interior
source[input] source $\sigma$ of the above equation
aa[input] factor a in the above equation
bb[input] vector b in the above equation
par[input/output] possible parameters to control the resolution of the equation. See the actual implementation in the derived class of Map for documentation.
psi[input/output] solution $\psi$ which satisfies $\psi(0)=0$.

Implements Lorene::Map.

Definition at line 456 of file map_radial_poisson_cpt.C.

References Lorene::Cmp::get_etat(), and Lorene::Map_radial::poisson_compact().

◆ poisson_frontiere()

void Lorene::Map_af::poisson_frontiere ( const Cmp source,
const Valeur limite,
int  type_raccord,
int  num_front,
Cmp pot,
double  fact_dir = 0.,
double  fact_neu = 0. 
) const
virtual

Solver of the Poisson equation with boundary condition for the affine mapping case.

Implements Lorene::Map.

Definition at line 138 of file cmp_pde_frontiere.C.

References Lorene::Cmp::get_etat().

◆ poisson_frontiere_double()

void Lorene::Map_af::poisson_frontiere_double ( const Cmp source,
const Valeur lim_func,
const Valeur lim_der,
int  num_zone,
Cmp pot 
) const
virtual

Solver of the Poisson equation with boundary condition for the affine mapping case, cases with boundary conditions of both Dirichlet and Neumann type (no condition imposed at infinity).

Implements Lorene::Map.

Definition at line 211 of file cmp_pde_frontiere.C.

References Lorene::Cmp::get_etat().

◆ poisson_interne()

void Lorene::Map_af::poisson_interne ( const Cmp source,
const Valeur limite,
Param par,
Cmp pot 
) const
virtual

Computes the solution of a Poisson equation in the shell, imposing a boundary condition at the surface of the star.

Parameters
source[input] : source of the equation.
limite[input] : limite[num_front] contains the angular function being the boudary condition.
par[input] : parameters of the computation.
pot[output] : result.

Implements Lorene::Map.

Definition at line 477 of file cmp_pde_frontiere.C.

References Lorene::Cmp::get_etat().

◆ poisson_regular()

void Lorene::Map_af::poisson_regular ( const Cmp source,
int  k_div,
int  nzet,
double  unsgam1,
Param par,
Cmp uu,
Cmp uu_regu,
Cmp uu_div,
Tenseur duu_div,
Cmp source_regu,
Cmp source_div 
) const
virtual

Computes the solution of a scalar Poisson equation.

The regularized source $\sigma_{\rm regu} = \sigma - \sigma_{\rm div}$ is constructed and solved.

Parameters
source[input] source $\sigma$ of the Poisson equation $\Delta u = \sigma$.
k_div[input] regularization degree of the procedure
nzet[input] number of domains covering the star
unsgam1[input] parameter $1/(\gamma-1)$ where $\gamma$ denotes the adiabatic index.
par[] not used by this Map_af version.
uu[output] solution u with the boundary condition u =0 at spatial infinity.
uu_regu[output] solution of the regular part of the source.
uu_div[output] solution of the diverging part of the source.
duu_div[output] derivative of the diverging potential
source_regu[output] regularized source
source_div[output] diverging part of the source

Implements Lorene::Map.

Definition at line 112 of file map_af_poisson_regu.C.

References Lorene::Cmp::get_etat().

◆ poisson_tau()

void Lorene::Map_af::poisson_tau ( const Cmp source,
Param par,
Cmp uu 
) const
virtual

Computes the solution of a scalar Poisson equation using a Tau method.

Parameters
source[input] source $\sigma$ of the Poisson equation $\Delta u = \sigma$.
par[] not used by this Map_af version.
uu[output] solution u with the boundary condition u =0 at spatial infinity.

Implements Lorene::Map.

Definition at line 168 of file map_af_poisson.C.

References Lorene::Cmp::get_etat().

◆ primr()

void Lorene::Map_af::primr ( const Scalar uu,
Scalar resu,
bool  null_infty 
) const
virtual

Computes the radial primitive which vanishes for $r\to \infty$.

i.e. the function $ F(r,\theta,\varphi) = \int_r^\infty f(r',\theta,\varphi) \, dr' $

Parameters
uu[input] function f (must have a dzpuis = 2)
resu[input] function F
null_inftyif true (default), the primitive is null at infinity (or on the grid boundary). F is null at the center otherwise

Implements Lorene::Map.

Definition at line 86 of file map_af_primr.C.

References Lorene::Scalar::get_etat(), MAX_BASE, R_CHEB, R_CHEBI, R_CHEBP, R_CHEBPIM_I, R_CHEBPIM_P, R_CHEBU, R_JACO02, R_LEG, R_LEGI, R_LEGP, and TRA_R.

◆ reevaluate() [1/2]

void Lorene::Map_radial::reevaluate ( const Map mp_prev,
int  nzet,
Cmp uu 
) const
virtualinherited

Recomputes the values of a Cmp at the collocation points after a change in the mapping.

Parameters
mp_prev[input] Previous value of the mapping.
nzet[input] Number of domains where the computation must be done: the computation is performed for the domains of index $0\le {\tt l} \le {\tt nzet-1}$; uu is set to zero in the other domains.
uu[input/output] input : Cmp previously computed on the mapping *mp_prev ; ouput : values of (logically) the same Cmp at the grid points defined by *this.

Implements Lorene::Map.

Definition at line 64 of file map_radial_reevaluate.C.

References Lorene::Cmp::get_dzpuis(), Lorene::Cmp::get_etat(), Lorene::Cmp::get_mp(), Lorene::Mg3d::get_nzone(), and Lorene::Map::mg.

◆ reevaluate() [2/2]

void Lorene::Map_radial::reevaluate ( const Map mp_prev,
int  nzet,
Scalar uu 
) const
virtualinherited

Recomputes the values of a Scalar at the collocation points after a change in the mapping.

Parameters
mp_prev[input] Previous value of the mapping.
nzet[input] Number of domains where the computation must be done: the computation is performed for the domains of index $0\le {\tt l} \le {\tt nzet-1}$; uu is set to zero in the other domains.
uu[input/output] input : Scalar previously computed on the mapping *mp_prev ; ouput : values of (logically) the same Scalar at the grid points defined by *this.

Implements Lorene::Map.

Definition at line 179 of file map_radial_reevaluate.C.

References Lorene::Scalar::get_dzpuis(), Lorene::Scalar::get_etat(), Lorene::Tensor::get_mp(), Lorene::Mg3d::get_nzone(), and Lorene::Map::mg.

◆ reevaluate_symy() [1/2]

void Lorene::Map_radial::reevaluate_symy ( const Map mp_prev,
int  nzet,
Cmp uu 
) const
virtualinherited

Recomputes the values of a Cmp at the collocation points after a change in the mapping.

Case where the Cmp is symmetric with respect to the plane y=0.

Parameters
mp_prev[input] Previous value of the mapping.
nzet[input] Number of domains where the computation must be done: the computation is performed for the domains of index $0\le {\tt l} \le {\tt nzet-1}$; uu is set to zero in the other domains.
uu[input/output] input : Cmp previously computed on the mapping *mp_prev ; ouput : values of (logically) the same Cmp at the grid points defined by *this.

Implements Lorene::Map.

Definition at line 65 of file map_radial_reeval_symy.C.

References Lorene::Cmp::get_dzpuis(), Lorene::Cmp::get_etat(), Lorene::Cmp::get_mp(), Lorene::Mg3d::get_nzone(), and Lorene::Map::mg.

◆ reevaluate_symy() [2/2]

void Lorene::Map_radial::reevaluate_symy ( const Map mp_prev,
int  nzet,
Scalar uu 
) const
virtualinherited

Recomputes the values of a Scalar at the collocation points after a change in the mapping.

Case where the Scalar is symmetric with respect to the plane y=0.

Parameters
mp_prev[input] Previous value of the mapping.
nzet[input] Number of domains where the computation must be done: the computation is performed for the domains of index $0\le {\tt l} \le {\tt nzet-1}$; uu is set to zero in the other domains.
uu[input/output] input : Scalar previously computed on the mapping *mp_prev ; ouput : values of (logically) the same Scalar at the grid points defined by *this.

Implements Lorene::Map.

Definition at line 199 of file map_radial_reeval_symy.C.

References Lorene::Scalar::get_dzpuis(), Lorene::Scalar::get_etat(), Lorene::Tensor::get_mp(), Lorene::Mg3d::get_nzone(), and Lorene::Map::mg.

◆ reset_coord()

◆ resize()

void Lorene::Map_af::resize ( int  l,
double  lambda 
)
virtual

Rescales the outer boundary of one domain.

The inner boundary is unchanged. The inner boundary of the next domain is changed to match the new outer boundary.

Parameters
l[input] index of the domain
lambda[input] factor by which the value of $R(\theta, \varphi)$ defining the outer boundary of the domain is to be multiplied.

Implements Lorene::Map.

Definition at line 690 of file map_af.C.

References Lorene::Mg3d::get_type_r(), and Lorene::Map::mg.

◆ sauve()

void Lorene::Map_af::sauve ( FILE *  fd) const
virtual

Save in a file.

Reimplemented from Lorene::Map_radial.

Definition at line 619 of file map_af.C.

References alpha, beta, Lorene::fwrite_be(), Lorene::Mg3d::get_nzone(), Lorene::Map::mg, and Lorene::Map_radial::sauve().

◆ set_alpha()

void Lorene::Map_af::set_alpha ( double  alpha0,
int  l 
)

Modifies the value of $\alpha$ in domain no. l.

Definition at line 760 of file map_af.C.

References alpha, and Lorene::Map_radial::reset_coord().

◆ set_beta()

void Lorene::Map_af::set_beta ( double  beta0,
int  l 
)

Modifies the value of $\beta$ in domain no. l.

Definition at line 771 of file map_af.C.

References beta, and Lorene::Map_radial::reset_coord().

◆ set_coord()

◆ set_ori()

void Lorene::Map::set_ori ( double  xa0,
double  ya0,
double  za0 
)
inherited

◆ set_rot_phi()

void Lorene::Map::set_rot_phi ( double  phi0)
inherited

◆ sol_elliptic()

void Lorene::Map_af::sol_elliptic ( Param_elliptic params,
const Scalar so,
Scalar uu 
) const

General elliptic solver.

The field is zero at infinity.

Parameters
params[input] : the operators and variables to be uses.
so[input] : the source.
uu[output] : the solution.

Definition at line 103 of file map_af_elliptic.C.

References Lorene::Scalar::get_etat().

◆ sol_elliptic_2d()

void Lorene::Map_af::sol_elliptic_2d ( Param_elliptic ope_var,
const Scalar source,
Scalar pot 
) const

General elliptic solver in a 2D case.

The field is zero at infinity.

Parameters
params[input] : the operators and variables to be uses.
so[input] : the source.
uu[output] : the solution.

Definition at line 61 of file map_af_elliptic_2d.C.

References Lorene::Scalar::get_etat().

◆ sol_elliptic_boundary() [1/2]

void Lorene::Map_af::sol_elliptic_boundary ( Param_elliptic params,
const Scalar so,
Scalar uu,
const Mtbl_cf bound,
double  fact_dir,
double  fact_neu 
) const

General elliptic solver including inner boundary conditions.

The field is zero at infinity.

Parameters
params[input] : the operators and variables to be uses.
so[input] : the source.
uu[output] : the solution.
bound[input] : the boundary condition
fact_dir: 1 Dirchlet condition, 0 Neumann condition
fact_neu: 0 Dirchlet condition, 1 Neumann condition

Definition at line 162 of file map_af_elliptic.C.

References Lorene::Scalar::get_etat().

◆ sol_elliptic_boundary() [2/2]

void Lorene::Map_af::sol_elliptic_boundary ( Param_elliptic params,
const Scalar so,
Scalar uu,
const Scalar bound,
double  fact_dir,
double  fact_neu 
) const

General elliptic solver including inner boundary conditions, with boundary given as a Scalar on mono-domain angular grid.

Definition at line 225 of file map_af_elliptic.C.

References Lorene::Scalar::get_etat().

◆ sol_elliptic_fixe_der_zero()

void Lorene::Map_af::sol_elliptic_fixe_der_zero ( double  val,
Param_elliptic params,
const Scalar so,
Scalar uu 
) const

General elliptic solver fixing the derivative at the origin and relaxing the continuity of the first derivative at the boundary between the nucleus and the first shell.

Parameters
val[input] : valeur of the derivative.
params[input] : the operators and variables to be uses.
so[input] : the source.
uu[output] : the solution.

Definition at line 486 of file map_af_elliptic.C.

References Lorene::Scalar::get_etat().

◆ sol_elliptic_no_zec()

void Lorene::Map_af::sol_elliptic_no_zec ( Param_elliptic params,
const Scalar so,
Scalar uu,
double  val 
) const

General elliptic solver.

The equation is not solved in the compactified domain.

Parameters
params[input] : the operators and variables to be uses.
so[input] : the source.
uu[output] : the solution.
val[input] : value at the last shell.

Definition at line 315 of file map_af_elliptic.C.

References Lorene::Scalar::get_etat().

◆ sol_elliptic_only_zec()

void Lorene::Map_af::sol_elliptic_only_zec ( Param_elliptic params,
const Scalar so,
Scalar uu,
double  val 
) const

General elliptic solver.

The equation is solved only in the compactified domain.

Parameters
params[input] : the operators and variables to be uses.
so[input] : the source.
uu[output] : the solution.
val[input] : value at the inner boundary.

Definition at line 371 of file map_af_elliptic.C.

References Lorene::Scalar::get_etat().

◆ sol_elliptic_pseudo_1d()

void Lorene::Map_af::sol_elliptic_pseudo_1d ( Param_elliptic ope_var,
const Scalar source,
Scalar pot 
) const

General elliptic solver in a pseudo 1d case.

The field is zero at infinity.

Parameters
params[input] : the operators and variables to be uses.
so[input] : the source.
uu[output] : the solution.

Definition at line 62 of file map_af_elliptic_pseudo_1d.C.

References Lorene::Scalar::get_etat().

◆ sol_elliptic_sin_zec()

void Lorene::Map_af::sol_elliptic_sin_zec ( Param_elliptic params,
const Scalar so,
Scalar uu,
double *  coefs,
double *  phases 
) const

General elliptic solver.

The equation is not solved in the compactified domain and the matching is done with an homogeneous solution.

Definition at line 429 of file map_af_elliptic.C.

References Lorene::Scalar::get_etat().

◆ srdsdt() [1/2]

void Lorene::Map_af::srdsdt ( const Cmp ci,
Cmp resu 
) const
virtual

Computes $1/r \partial/ \partial \theta$ of a Cmp.

Note that in the compactified external domain (CED), it computes $1/u \partial/ \partial \theta = r \partial/ \partial \theta$.

Parameters
ci[input] field to consider
resu[output] derivative of ci

Implements Lorene::Map.

Definition at line 478 of file map_af_deriv.C.

References Lorene::Cmp::get_etat().

◆ srdsdt() [2/2]

void Lorene::Map_af::srdsdt ( const Scalar uu,
Scalar resu 
) const
virtual

Computes $1/r \partial/ \partial \theta$ of a Scalar.

Note that in the compactified external domain (CED), the dzpuis flag of the output is 2 if the input has dzpuis = 0, and is increased by 1 in other cases.

Parameters
uu[input] field to consider
resu[output] derivative of uu

Implements Lorene::Map.

Definition at line 572 of file map_af_deriv.C.

References Lorene::Scalar::get_etat().

◆ srstdsdp() [1/2]

void Lorene::Map_af::srstdsdp ( const Cmp ci,
Cmp resu 
) const
virtual

Computes $1/(r\sin\theta) \partial/ \partial \phi$ of a Cmp.

Note that in the compactified external domain (CED), it computes $1/(u\sin\theta) \partial/ \partial \phi = r/\sin\theta \partial/ \partial \phi$.

Parameters
ci[input] field to consider
resu[output] derivative of ci

Implements Lorene::Map.

Definition at line 636 of file map_af_deriv.C.

References Lorene::Cmp::get_etat().

◆ srstdsdp() [2/2]

void Lorene::Map_af::srstdsdp ( const Scalar uu,
Scalar resu 
) const
virtual

Computes $1/(r\sin\theta) \partial/ \partial \phi$ of a Scalar.

Note that in the compactified external domain (CED), the dzpuis flag of the output is 2 if the input has dzpuis = 0, and is increased by 1 in other cases.

Parameters
uu[input] field to consider
resu[output] derivative of uu

Implements Lorene::Map.

Definition at line 732 of file map_af_deriv.C.

References Lorene::Scalar::get_etat().

◆ stdsdp()

void Lorene::Map_af::stdsdp ( const Scalar uu,
Scalar resu 
) const
virtual

Computes $1/\sin\theta \partial/ \partial \varphi$ of a Scalar.

Parameters
uu[input] scalar field
resu[output] derivative of uu

Implements Lorene::Map.

Definition at line 826 of file map_af_deriv.C.

References Lorene::Scalar::get_etat().

◆ val_lx() [1/2]

void Lorene::Map_af::val_lx ( double  rr,
double  theta,
double  pphi,
int &  l,
double &  xi 
) const
virtual

Computes the domain index l and the value of $\xi$ corresponding to a point given by its physical coordinates $(r, \theta, \phi)$.

Parameters
rr[input] value of r
theta[input] value of $\theta$
pphi[input] value of $\phi$
l[output] value of the domain index
xi[output] value of $\xi$

Implements Lorene::Map.

Definition at line 131 of file map_af_radius.C.

References alpha, beta, Lorene::Mg3d::get_nzone(), Lorene::Mg3d::get_type_r(), and Lorene::Map::mg.

◆ val_lx() [2/2]

void Lorene::Map_af::val_lx ( double  rr,
double  theta,
double  pphi,
const Param par,
int &  l,
double &  xi 
) const
virtual

Computes the domain index l and the value of $\xi$ corresponding to a point given by its physical coordinates $(r, \theta, \phi)$.

Parameters
rr[input] value of r
theta[input] value of $\theta$
pphi[input] value of $\phi$
par[] unused by the Map_af version
l[output] value of the domain index
xi[output] value of $\xi$

Implements Lorene::Map.

Definition at line 195 of file map_af_radius.C.

References val_lx().

◆ val_lx_jk()

void Lorene::Map_af::val_lx_jk ( double  rr,
int  j,
int  k,
const Param par,
int &  l,
double &  xi 
) const
virtual

Computes the domain index l and the value of $\xi$ corresponding to a point of arbitrary r but collocation values of $(\theta, \phi)$.

Parameters
rr[input] value of r
j[input] index of the collocation point in $\theta$
k[input] index of the collocation point in $\phi$
par[] unused by the Map_af version
l[output] value of the domain index
xi[output] value of $\xi$

Implements Lorene::Map_radial.

Definition at line 218 of file map_af_radius.C.

References val_lx().

◆ val_r()

double Lorene::Map_af::val_r ( int  l,
double  xi,
double  theta,
double  pphi 
) const
virtual

Returns the value of the radial coordinate r for a given $(\xi, \theta', \phi')$ in a given domain.

Parameters
l[input] index of the domain
xi[input] value of $\xi$
theta[input] value of $\theta'$
pphi[input] value of $\phi'$
Returns
value of $r=R_l(\xi, \theta', \phi')$

Implements Lorene::Map.

Definition at line 99 of file map_af_radius.C.

References Lorene::Mg3d::get_type_r(), and Lorene::Map::mg.

◆ val_r_jk()

double Lorene::Map_af::val_r_jk ( int  l,
double  xi,
int  j,
int  k 
) const
virtual

Returns the value of the radial coordinate r for a given $\xi$ and a given collocation point in $(\theta', \phi')$ in a given domain.

Parameters
l[input] index of the domain
xi[input] value of $\xi$
j[input] index of the collocation point in $\theta'$
k[input] index of the collocation point in $\phi'$
Returns
value of $r=R_l(\xi, {\theta'}_j, {\phi'}_k)$

Implements Lorene::Map_radial.

Definition at line 208 of file map_af_radius.C.

References val_r().

Member Data Documentation

◆ alpha

double* Lorene::Map_af::alpha
private

Array (size: mg->nzone ) of the values of $\alpha$ in each domain.

Definition at line 2054 of file map.h.

◆ beta

double* Lorene::Map_af::beta
private

Array (size: mg->nzone ) of the values of $\beta$ in each domain.

Definition at line 2056 of file map.h.

◆ bvect_cart

Base_vect_cart Lorene::Map::bvect_cart
protectedinherited

Cartesian basis $(\partial/\partial x,\partial/\partial y,\partial/\partial z)$ associated with the coordinates (x,y,z) of the mapping, i.e.

the Cartesian coordinates related to $(r, \theta, \phi)$ by means of usual formulae.

Definition at line 715 of file map.h.

◆ bvect_spher

Base_vect_spher Lorene::Map::bvect_spher
protectedinherited

Orthonormal vectorial basis $(\partial/\partial r,1/r\partial/\partial \theta, 1/(r\sin\theta)\partial/\partial \phi)$ associated with the coordinates $(r, \theta, \phi)$ of the mapping.

Definition at line 707 of file map.h.

◆ cosp

Coord Lorene::Map::cosp
inherited

$\cos\phi$

Definition at line 742 of file map.h.

◆ cost

Coord Lorene::Map::cost
inherited

$\cos\theta$

Definition at line 740 of file map.h.

◆ d2rdtdx

Coord Lorene::Map_radial::d2rdtdx
inherited

$\partial^2 R/\partial\xi\partial\theta'$ in the nucleus and in the non-compactified shells; \ $-\partial^2 U/\partial\xi\partial\theta'$ in the compactified outer domain.

Definition at line 1661 of file map.h.

◆ d2rdx2

Coord Lorene::Map_radial::d2rdx2
inherited

$\partial^2 R/\partial\xi^2$ in the nucleus and in the non-compactified shells; \ $-\partial^2 U/\partial\xi^2 $ in the compactified outer domain.

Definition at line 1640 of file map.h.

◆ drdt

Coord Lorene::Map_radial::drdt
inherited

$\partial R/\partial\theta'$ in the nucleus and in the non-compactified shells; \ $-\partial U/\partial\theta'$ in the compactified external domain (CED).

Definition at line 1589 of file map.h.

◆ dxdr

Coord Lorene::Map_radial::dxdr
inherited

$1/(\partial R/\partial\xi) = \partial \xi /\partial r$ in the nucleus and in the non-compactified shells; \ $-1/(\partial U/\partial\xi) = - \partial \xi /\partial u$ in the compactified outer domain.

Definition at line 1581 of file map.h.

◆ lapr_tp

Coord Lorene::Map_radial::lapr_tp
inherited

$1/R^2 \times [ 1/\sin(\theta)\times \partial /\partial\theta' (\sin\theta \partial R /\partial\theta') + 1/\sin^2\theta \partial^2 R /\partial{\varphi'}^2] $ in the nucleus and in the non-compactified shells; \ $- 1/U^2 \times [ 1/\sin(\theta)\times \partial /\partial\theta' (\sin\theta \partial U /\partial\theta') + 1/\sin^2\theta \partial^2 U /\partial{\varphi'}^2] $ in the compactified outer domain.

Definition at line 1652 of file map.h.

◆ mg

const Mg3d* Lorene::Map::mg
protectedinherited

Pointer on the multi-grid Mgd3 on which this is defined.

Definition at line 694 of file map.h.

◆ ori_x

double Lorene::Map::ori_x
protectedinherited

Absolute coordinate x of the origin.

Definition at line 696 of file map.h.

◆ ori_y

double Lorene::Map::ori_y
protectedinherited

Absolute coordinate y of the origin.

Definition at line 697 of file map.h.

◆ ori_z

double Lorene::Map::ori_z
protectedinherited

Absolute coordinate z of the origin.

Definition at line 698 of file map.h.

◆ p_cmp_zero

Cmp* Lorene::Map::p_cmp_zero
protectedinherited

The null Cmp.

To be used by the Tenseur class when necessary to return a null Cmp .

Definition at line 731 of file map.h.

◆ p_flat_met_cart

Metric_flat* Lorene::Map::p_flat_met_cart
mutableprotectedinherited

Pointer onto the flat metric associated with the Cartesian coordinates and with components expressed in the triad bvect_cart.

Definition at line 725 of file map.h.

◆ p_flat_met_spher

Metric_flat* Lorene::Map::p_flat_met_spher
mutableprotectedinherited

Pointer onto the flat metric associated with the spherical coordinates and with components expressed in the triad bvect_spher.

Definition at line 720 of file map.h.

◆ p_mp_angu

Map_af* Lorene::Map::p_mp_angu
mutableprotectedinherited

Pointer on the "angular" mapping.

Definition at line 733 of file map.h.

◆ phi

Coord Lorene::Map::phi
inherited

$\phi$ coordinate centered on the grid

Definition at line 738 of file map.h.

◆ r

Coord Lorene::Map::r
inherited

r coordinate centered on the grid

Definition at line 736 of file map.h.

◆ rot_phi

double Lorene::Map::rot_phi
protectedinherited

Angle between the x –axis and X –axis.

Definition at line 699 of file map.h.

◆ sinp

Coord Lorene::Map::sinp
inherited

$\sin\phi$

Definition at line 741 of file map.h.

◆ sint

Coord Lorene::Map::sint
inherited

$\sin\theta$

Definition at line 739 of file map.h.

◆ sr2d2rdt2

Coord Lorene::Map_radial::sr2d2rdt2
inherited

$1/R^2 \partial^2 R/\partial{\theta'}^2$ in the nucleus and in the non-compactified shells; \ $-1/U^2 \partial^2 U/\partial{\theta'}^2$ in the compactified outer domain.

Definition at line 1678 of file map.h.

◆ sr2drdt

Coord Lorene::Map_radial::sr2drdt
inherited

$1/R^2 \times (\partial R/\partial\theta')$ in the nucleus and in the non-compactified shells; \ $-1/U^2 \times (\partial U/\partial\theta')$ in the compactified outer domain.

Definition at line 1621 of file map.h.

◆ sr2stdrdp

Coord Lorene::Map_radial::sr2stdrdp
inherited

$1/(R^2\sin\theta) \times (\partial R/\partial\varphi')$ in the nucleus and in the non-compactified shells; \ $-1/(U^2\sin\theta) \times (\partial U/\partial\varphi')$ in the compactified outer domain.

Definition at line 1629 of file map.h.

◆ srdrdt

Coord Lorene::Map_radial::srdrdt
inherited

$1/R \times (\partial R/\partial\theta')$ in the nucleus and in the non-compactified shells; \ $-1/U \times (\partial U/\partial\theta)$ in the compactified outer domain.

Definition at line 1605 of file map.h.

◆ srstdrdp

Coord Lorene::Map_radial::srstdrdp
inherited

$1/(R\sin\theta) \times (\partial R/\partial\varphi')$ in the nucleus and in the non-compactified shells; \ $-1/(U\sin\theta) \times (\partial U/\partial\varphi')$ in the compactified outer domain.

Definition at line 1613 of file map.h.

◆ sstd2rdpdx

Coord Lorene::Map_radial::sstd2rdpdx
inherited

$1/\sin\theta \times \partial^2 R/\partial\xi\partial\varphi'$ in the nucleus and in the non-compactified shells; \ $-1/\sin\theta \times \partial^2 U/\partial\xi\partial\varphi' $ in the compactified outer domain.

Definition at line 1669 of file map.h.

◆ stdrdp

Coord Lorene::Map_radial::stdrdp
inherited

${1\over\sin\theta} \partial R/\partial\varphi'$ in the nucleus and in the non-compactified shells; \ $-{1\over\sin\theta}\partial U/\partial\varphi'$ in the compactified external domain (CED).

Definition at line 1597 of file map.h.

◆ tet

Coord Lorene::Map::tet
inherited

$\theta$ coordinate centered on the grid

Definition at line 737 of file map.h.

◆ x

Coord Lorene::Map::x
inherited

x coordinate centered on the grid

Definition at line 744 of file map.h.

◆ xa

Coord Lorene::Map::xa
inherited

Absolute x coordinate.

Definition at line 748 of file map.h.

◆ xsr

Coord Lorene::Map_radial::xsr
inherited

$\xi/R$ in the nucleus; \ 1/R in the non-compactified shells; \ $(\xi-1)/U$ in the compactified outer domain.

Definition at line 1570 of file map.h.

◆ y

Coord Lorene::Map::y
inherited

y coordinate centered on the grid

Definition at line 745 of file map.h.

◆ ya

Coord Lorene::Map::ya
inherited

Absolute y coordinate.

Definition at line 749 of file map.h.

◆ z

Coord Lorene::Map::z
inherited

z coordinate centered on the grid

Definition at line 746 of file map.h.

◆ za

Coord Lorene::Map::za
inherited

Absolute z coordinate.

Definition at line 750 of file map.h.


The documentation for this class was generated from the following files: