LORENE
map_af_integ.C
1 /*
2  * Method of the class Map_af for computing the integral of a Cmp over
3  * all space.
4  */
5 
6 /*
7  * Copyright (c) 1999-2003 Eric Gourgoulhon
8  *
9  * This file is part of LORENE.
10  *
11  * LORENE is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * LORENE is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with LORENE; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24  *
25  */
26 
27 
28 
29 
30 /*
31  * $Id: map_af_integ.C,v 1.12 2025/03/04 16:31:11 j_novak Exp $
32  * $Log: map_af_integ.C,v $
33  * Revision 1.12 2025/03/04 16:31:11 j_novak
34  * Updated method "integrale" to "Scalar" objects.
35  *
36  * Revision 1.11 2025/01/23 11:01:12 j_novak
37  * Added bases in theta that give 0 integral by symmetry.
38  *
39  * Revision 1.10 2016/12/05 16:17:56 j_novak
40  * Suppression of some global variables (file names, loch, ...) to prevent redefinitions
41  *
42  * Revision 1.9 2014/10/13 08:53:02 j_novak
43  * Lorene classes and functions now belong to the namespace Lorene.
44  *
45  * Revision 1.8 2014/10/06 15:13:12 j_novak
46  * Modified #include directives to use c++ syntax.
47  *
48  * Revision 1.7 2009/10/08 16:20:47 j_novak
49  * Addition of new bases T_COS and T_SIN.
50  *
51  * Revision 1.6 2008/08/27 08:48:05 jl_cornou
52  * Added R_JACO02 case
53  *
54  * Revision 1.5 2007/10/05 15:56:19 j_novak
55  * Addition of new bases for the non-symmetric case in theta.
56  *
57  * Revision 1.4 2003/12/19 16:21:43 j_novak
58  * Shadow hunt
59  *
60  * Revision 1.3 2003/10/19 19:58:15 e_gourgoulhon
61  * Access to Base_val::b now via Base_val::get_b().
62  *
63  * Revision 1.2 2003/10/15 10:35:27 e_gourgoulhon
64  * Changed cast (double *) into static_cast<double*>.
65  *
66  * Revision 1.1.1.1 2001/11/20 15:19:27 e_gourgoulhon
67  * LORENE
68  *
69  * Revision 1.2 2000/01/28 16:09:37 eric
70  * Remplacement du ci.get_dzpuis() == 4 par ci.check_dzpuis(4).
71  *
72  * Revision 1.1 1999/12/09 10:45:43 eric
73  * Initial revision
74  *
75  *
76  * $Header: /cvsroot/Lorene/C++/Source/Map/map_af_integ.C,v 1.12 2025/03/04 16:31:11 j_novak Exp $
77  *
78  */
79 
80 // Headers Lorene
81 #include "scalar.h"
82 
83 namespace Lorene {
84  Tbl* Map_af::integrale(const Cmp& ci) const {
85  Scalar sci(ci) ;
86  return integrale(sci) ;
87  }
88 
89 Tbl* Map_af::integrale(const Scalar& sci) const {
90 
91  static double* cx_tcp = 0 ; // Coefficients theta, dev. en cos(2l theta)
92  static double* cx_rrp = 0 ; // Coefficients r rare, dev. en T_{2i}
93  static double* cx_rf_x2 = 0 ; // Coefficients r fin, int. en r^2
94  static double* cx_rf_x = 0 ; // Coefficients r fin, int en r
95  static double* cx_rf = 0 ; // Coefficients r fin, int en cst.
96 
97  static int nt_cp_pre = 0 ;
98  static int nr_p_pre = 0 ;
99  static int nr_f_pre = 0 ;
100 
101  assert(sci.get_etat() != ETATNONDEF) ;
102 
103  int nz = mg->get_nzone() ;
104 
105  Tbl* resu = new Tbl(nz) ;
106 
107  if (sci.get_etat() == ETATZERO) {
108  resu->annule_hard() ;
109  return resu ;
110  }
111 
112  sci.get_spectral_va().coef() ; // The spectral coefficients are required
113 
114  const Mtbl_cf* p_mti = sci.get_spectral_va().c_cf ;
115 
116  assert( sci.check_dzpuis(4) ) ; // dzpuis must be equal to 4
117 
118  assert(p_mti->get_etat() == ETATQCQ) ;
119 
120  resu->set_etat_qcq() ; // Allocates the memory for the array of double
121 
122  // Loop of the various domains
123  // ---------------------------
124  for (int l=0 ; l<nz ; l++) {
125 
126  const Tbl* p_tbi = p_mti->t[l] ;
127 
128  if ( p_tbi->get_etat() == ETATZERO ) {
129  resu->t[l] = 0 ;
130  }
131  else { // Case where the computation must be done
132 
133  assert( p_tbi->get_etat() == ETATQCQ ) ;
134 
135  int nt = mg->get_nt(l) ;
136  int nr = mg->get_nr(l) ;
137 
138  int base = (p_mti->base).get_b(l) ;
139  int base_r = base & MSQ_R ;
140  int base_t = base & MSQ_T ;
141  int base_p = base & MSQ_P ;
142 
143  // ----------------------------------
144  // Integration on theta -> array in r
145  // ----------------------------------
146 
147  double* s_tr = new double[nr] ; // Partial integral on theta
148  double* x_spec = p_tbi->t ; // Pointer on the spectral coefficients
149 
150  switch (base_t) {
151 
152  // From symmetry these case are all zero.
153  case T_SIN: case T_COSSIN_S: case T_SIN_P: case T_COSSIN_SP:
154  case T_COSSIN_CI: {
155  delete [] s_tr ;
156  resu->annule_hard() ;
157  return resu ;
158  break ;
159  }
160 
161  case T_COS_P: case T_COSSIN_CP: {
162  if (nt > nt_cp_pre) { // Initialization of factors for summation
163  nt_cp_pre = nt ;
164  cx_tcp
165  = static_cast<double*>(realloc(cx_tcp, nt*sizeof(double))) ;
166  for (int j=0 ; j<nt ; j++) {
167  cx_tcp[j] = 2./(1. - 4.*j*j) ; // Factor 2 symmetry
168  }
169  }
170 
171  // Summation :
172  for (int i=0 ; i<nr ; i++) s_tr[i] = 0 ;
173  for (int j=0 ; j<nt ; j++) {
174  for (int i=0 ; i<nr ; i++) {
175  s_tr[i] += cx_tcp[j] * x_spec[i] ;
176  }
177  x_spec += nr ; // Next theta
178  }
179  break ;
180  }
181 
182  case T_COSSIN_C: case T_COS: {
183  // Summation :
184  for (int i=0 ; i<nr ; i++) s_tr[i] = 0 ;
185  for (int j=0 ; j<nt ; j++) {
186  if ((j%2)==0)
187  for (int i=0 ; i<nr ; i++) {
188  s_tr[i] += (2. / (1.-j*j)) * x_spec[i] ;
189  }
190  x_spec += nr ; // Next theta
191  }
192  break ;
193  }
194  default: {
195  cout << "Map_af::integrale: unknown theta basis ! " << endl ;
196  abort () ;
197  break ;
198  }
199 
200  } // End of the various cases on base_t
201 
202  // ----------------
203  // Integration on r
204  // ----------------
205 
206  double som = 0 ;
207  double som_x2 = 0;
208  double som_x = 0 ;
209  double som_c = 0 ;
210 
211  switch(base_r) {
212  case R_CHEBP: case R_CHEBPIM_P: case R_CHEBPI_P :{
213  assert(beta[l] == 0) ;
214  if (nr > nr_p_pre) { // Initialization of factors for summation
215  nr_p_pre = nr ;
216  cx_rrp = static_cast<double*>(realloc(cx_rrp, nr*sizeof(double))) ;
217  for (int i=0 ; i<nr ; i++) {
218  cx_rrp[i] = (3. - 4.*i*i) /
219  (9. - 40. * i*i + 16. * i*i*i*i) ;
220  }
221  }
222 
223  for (int i=0 ; i<nr ; i++) {
224  som += cx_rrp[i] * s_tr[i] ;
225  }
226  double rmax = alpha[l] ;
227  som *= rmax*rmax*rmax ;
228  break ;
229  }
230 
231  case R_CHEB: {
232  if (nr > nr_f_pre) { // Initialization of factors for summation
233  nr_f_pre = nr ;
234  cx_rf_x2 = static_cast<double*>(realloc(cx_rf_x2, nr*sizeof(double))) ;
235  cx_rf_x = static_cast<double*>(realloc(cx_rf_x, nr*sizeof(double))) ;
236  cx_rf = static_cast<double*>(realloc(cx_rf, nr*sizeof(double))) ;
237  for (int i=0 ; i<nr ; i +=2 ) {
238  cx_rf_x2[i] = 2.*(3. - i*i)/(9. - 10. * i*i + i*i*i*i) ;
239  cx_rf_x[i] = 0 ;
240  cx_rf[i] = 2./(1. - i*i) ;
241  }
242  for (int i=1 ; i<nr ; i +=2 ) {
243  cx_rf_x2[i] = 0 ;
244  cx_rf_x[i] = 2./(4. - i*i) ;
245  cx_rf[i] = 0 ;
246  }
247  }
248 
249  for (int i=0 ; i<nr ; i +=2 ) {
250  som_x2 += cx_rf_x2[i] * s_tr[i] ;
251  }
252  for (int i=1 ; i<nr ; i +=2 ) {
253  som_x += cx_rf_x[i] * s_tr[i] ;
254  }
255  for (int i=0 ; i<nr ; i +=2 ) {
256  som_c += cx_rf[i] * s_tr[i] ;
257  }
258  double a = alpha[l] ;
259  double b = beta[l] ;
260  som = a*a*a * som_x2 + 2.*a*a*b * som_x + a*b*b * som_c ;
261  break ;
262  }
263 
264  case R_JACO02: {
265  if (nr > nr_f_pre) { // Initialization of factors for summation
266  nr_f_pre = nr ;
267  cx_rf_x2 = static_cast<double*>(realloc(cx_rf_x2, nr*sizeof(double))) ;
268  cx_rf_x = static_cast<double*>(realloc(cx_rf_x, nr*sizeof(double))) ;
269  cx_rf = static_cast<double*>(realloc(cx_rf, nr*sizeof(double))) ;
270  double signe = 1 ;
271  for (int i=0 ; i<nr ; i +=1 ) {
272  cx_rf_x2[i] = 0 ;
273  cx_rf_x[i] = 2*signe/double(i+1)/double(i+2);
274  cx_rf[i] = 2*signe ;
275  signe = - signe ;
276  }
277  cx_rf_x2[0] = double(8)/double(3) ;
278  }
279 
280  for (int i=0 ; i<nr ; i +=1 ) {
281  som_x2 += cx_rf_x2[i] * s_tr[i] ;
282  }
283  for (int i=1 ; i<nr ; i +=1 ) {
284  som_x += cx_rf_x[i] * s_tr[i] ;
285  }
286  for (int i=0 ; i<nr ; i +=1 ) {
287  som_c += cx_rf[i] * s_tr[i] ;
288  }
289  double a = alpha[l] ;
290  double b = beta[l] ;
291  assert(b == a) ;
292  som = a*a*a * som_x2 + 2.*a*a*(b-a) * som_x + a*(b-a)*(b-a) * som_c ;
293  break ;
294  }
295 
296  case R_CHEBU: {
297  assert(beta[l] == - alpha[l]) ;
298  if (nr > nr_f_pre) { // Initialization of factors for summation
299  nr_f_pre = nr ;
300  cx_rf = static_cast<double*>(realloc(cx_rf, nr*sizeof(double))) ;
301  for (int i=0 ; i<nr ; i +=2 ) {
302  cx_rf[i] = 2./(1. - i*i) ;
303  }
304  for (int i=1 ; i<nr ; i +=2 ) {
305  cx_rf[i] = 0 ;
306  }
307  }
308 
309  for (int i=0 ; i<nr ; i +=2 ) {
310  som_c += cx_rf[i] * s_tr[i] ;
311  }
312  som = - alpha[l] * som_c ;
313  break ;
314  }
315 
316 
317  default: {
318  cout << "Map_af::integrale: unknown r basis ! " << endl ;
319  abort () ;
320  break ;
321  }
322 
323  } // End of the various cases on base_r
324 
325  // ------------------
326  // Integration on phi
327  // ------------------
328 
329  switch (base_p) {
330 
331  case P_COSSIN: {
332  som *= 2. * M_PI ;
333  break ;
334  }
335 
336  case P_COSSIN_P: {
337  som *= 2. * M_PI ;
338  break ;
339  }
340 
341  default: {
342  cout << "Map_af::integrale: unknown phi basis ! " << endl ;
343  abort () ;
344  break ;
345  }
346 
347  } // End of the various cases on base_p
348 
349  // Final result for this domain:
350  // ----------------------------
351 
352  resu->t[l] = som ;
353  delete [] s_tr ;
354 
355  } // End of the case where the computation must be done
356 
357 
358  } // End of the loop onto the domains
359 
360  return resu ;
361 
362 }
363 }
Mtbl_cf * c_cf
Coefficients of the spectral expansion of the function.
Definition: valeur.h:312
Component of a tensorial field *** DEPRECATED : use class Scalar instead ***.
Definition: cmp.h:446
#define P_COSSIN
dev. standart
Definition: type_parite.h:245
void coef() const
Computes the coeffcients of *this.
Definition: valeur_coef.C:151
double * alpha
Array (size: mg->nzone ) of the values of in each domain.
Definition: map.h:2103
Lorene prototypes.
Definition: app_hor.h:67
Tensor field of valence 0 (or component of a tensorial field).
Definition: scalar.h:399
#define MSQ_P
Extraction de l&#39;info sur Phi.
Definition: type_parite.h:156
#define T_COS
dev. cos seulement
Definition: type_parite.h:196
#define T_COSSIN_SP
sin pair-cos impair alternes, sin pour m=0
Definition: type_parite.h:210
int get_etat() const
Gives the logical state.
Definition: tbl.h:414
int get_etat() const
Returns the logical state ETATNONDEF (undefined), ETATZERO (null) or ETATQCQ (ordinary).
Definition: scalar.h:566
int get_etat() const
Returns the logical state.
Definition: mtbl_cf.h:466
#define R_JACO02
base de Jacobi(0,2) ordinaire (finjac)
Definition: type_parite.h:188
virtual Tbl * integrale(const Scalar &) const
Computes the integral over all space of a Scalar.
Definition: map_af_integ.C:89
#define T_SIN
dev. sin seulement
Definition: type_parite.h:198
void set_etat_qcq()
Sets the logical state to ETATQCQ (ordinary state).
Definition: tbl.C:364
#define R_CHEBP
base de Cheb. paire (rare) seulement
Definition: type_parite.h:168
#define T_COS_P
dev. cos seulement, harmoniques paires
Definition: type_parite.h:200
#define MSQ_T
Extraction de l&#39;info sur Theta.
Definition: type_parite.h:154
#define T_COSSIN_C
dev. cos-sin alternes, cos pour m=0
Definition: type_parite.h:192
double * t
The array of double.
Definition: tbl.h:176
#define MSQ_R
Extraction de l&#39;info sur R.
Definition: type_parite.h:152
#define T_SIN_P
dev. sin seulement, harmoniques paires
Definition: type_parite.h:202
double * beta
Array (size: mg->nzone ) of the values of in each domain.
Definition: map.h:2105
int get_nzone() const
Returns the number of domains.
Definition: grilles.h:467
#define R_CHEBPIM_P
Cheb. pair-impair suivant m, pair pour m=0.
Definition: type_parite.h:176
int get_nr(int l) const
Returns the number of points in the radial direction ( ) in domain no. l.
Definition: grilles.h:471
const Mg3d * mg
Pointer on the multi-grid Mgd3 on which this is defined.
Definition: map.h:703
#define R_CHEBPI_P
Cheb. pair-impair suivant l pair pour l=0.
Definition: type_parite.h:172
#define T_COSSIN_CI
cos impair-sin pair alternes, cos pour m=0
Definition: type_parite.h:212
Coefficients storage for the multi-domain spectral method.
Definition: mtbl_cf.h:196
Base_val base
Bases of the spectral expansions.
Definition: mtbl_cf.h:210
Basic array class.
Definition: tbl.h:164
int get_nt(int l) const
Returns the number of points in the co-latitude direction ( ) in domain no. l.
Definition: grilles.h:476
#define R_CHEBU
base de Chebychev ordinaire (fin), dev. en 1/r
Definition: type_parite.h:180
#define P_COSSIN_P
dev. sur Phi = 2*phi, freq. paires
Definition: type_parite.h:247
bool check_dzpuis(int dzi) const
Returns false if the last domain is compactified and *this is not zero in this domain and dzpuis is n...
Definition: scalar.C:879
#define T_COSSIN_CP
cos pair-sin impair alternes, cos pour m=0
Definition: type_parite.h:208
void annule_hard()
Sets the Tbl to zero in a hard way.
Definition: tbl.C:375
Tbl ** t
Array (size nzone ) of pointers on the Tbl &#39;s which contain the spectral coefficients in each domain...
Definition: mtbl_cf.h:215
const Valeur & get_spectral_va() const
Returns va (read only version)
Definition: scalar.h:613
#define T_COSSIN_S
dev. cos-sin alternes, sin pour m=0
Definition: type_parite.h:194
#define R_CHEB
base de Chebychev ordinaire (fin)
Definition: type_parite.h:166