LORENE
etoile_rot.C
1 /*
2  * Methods for the class Etoile_rot
3  *
4  * (see file etoile.h for documentation)
5  */
6 
7 /*
8  * Copyright (c) 2000-2001 Eric Gourgoulhon
9  *
10  * This file is part of LORENE.
11  *
12  * LORENE is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * LORENE is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with LORENE; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25  *
26  */
27 
28 
29 
30 
31 /*
32  * $Id: etoile_rot.C,v 1.10 2023/07/04 08:59:53 j_novak Exp $
33  * $Log: etoile_rot.C,v $
34  * Revision 1.10 2023/07/04 08:59:53 j_novak
35  * Added method "r_circ_merid()" to compute the circumferential meridional radius.
36  *
37  * Revision 1.9 2021/04/13 11:24:53 j_novak
38  * Corrected a bug in Etoile_rot::fait_shift() which was missing the np=1 case.
39  *
40  * Revision 1.8 2016/12/05 16:17:55 j_novak
41  * Suppression of some global variables (file names, loch, ...) to prevent redefinitions
42  *
43  * Revision 1.7 2015/12/03 14:17:24 j_novak
44  * Check added for the computation of area (thanks S. Koeppel).
45  *
46  * Revision 1.6 2015/06/10 14:37:44 a_sourie
47  * Corrected the formula for the quadrupole.
48  *
49  * Revision 1.5 2014/10/13 08:52:59 j_novak
50  * Lorene classes and functions now belong to the namespace Lorene.
51  *
52  * Revision 1.4 2004/03/25 10:29:07 j_novak
53  * All LORENE's units are now defined in the namespace Unites (in file unites.h).
54  *
55  * Revision 1.3 2001/12/06 15:11:43 jl_zdunik
56  * Introduction of the new function f_eq() in the class Etoile_rot
57  *
58  * Revision 1.2 2001/12/04 21:27:53 e_gourgoulhon
59  *
60  * All writing/reading to a binary file are now performed according to
61  * the big endian convention, whatever the system is big endian or
62  * small endian, thanks to the functions fwrite_be and fread_be
63  *
64  * Revision 1.1.1.1 2001/11/20 15:19:28 e_gourgoulhon
65  * LORENE
66  *
67  * Revision 2.17 2001/10/24 15:36:20 eric
68  * Ajout de la fonction display_poly.
69  *
70  * Revision 2.16 2001/10/16 14:49:02 eric
71  * Appel de get_omega_c() pour avoir la valeur centrale de Omega.
72  * Affichage different si rotation differentielle.
73  *
74  * Revision 2.15 2001/09/13 08:32:01 eric
75  * Ajout du facteur de compacite M/R dans l'affichage.
76  *
77  * Revision 2.14 2001/06/20 14:20:56 novak
78  * Appel a Etoile_rot::set_der0x0 dans del_deriv (au lieu de set_der0x0
79  * tout court).
80  *
81  * Revision 2.13 2001/03/26 09:30:58 jlz
82  * New members p_espec_isco and p_lspec_isco.
83  *
84  * Revision 2.12 2000/11/20 21:42:02 eric
85  * Appel de fait_nphi() dans le constructeur par lecture de fichier.
86  *
87  * Revision 2.11 2000/11/18 23:18:30 eric
88  * Modifs affichage.
89  *
90  * Revision 2.10 2000/11/18 21:09:57 eric
91  * Ajout des membres p_r_isco et p_f_isco.
92  *
93  * Revision 2.9 2000/11/07 16:33:08 eric
94  * Modif affichage.
95  *
96  * Revision 2.8 2000/10/12 15:37:01 eric
97  * Ajout de la fonction fait_nphi().
98  *
99  * Revision 2.7 2000/09/18 16:15:12 eric
100  * Ajout du membre tkij.
101  *
102  * Revision 2.6 2000/08/31 15:38:00 eric
103  * Bases spectrales standards pour bbb et b_car dans le constructeur
104  * standard (initialisation a la metrique plate).
105  *
106  * Revision 2.5 2000/08/31 11:25:45 eric
107  * Ajout des membres tnphi et ak_car.
108  *
109  * Revision 2.4 2000/08/25 12:28:29 eric
110  * Modif affichage.
111  *
112  * Revision 2.3 2000/08/18 14:01:59 eric
113  * Ajout de partial_display
114  *
115  * Revision 2.2 2000/08/17 12:40:04 eric
116  * *** empty log message ***
117  *
118  * Revision 2.1 2000/07/21 16:31:26 eric
119  * *** empty log message ***
120  *
121  * Revision 1.1 2000/07/20 15:32:37 eric
122  * Initial revision
123  *
124  *
125  * $Header: /cvsroot/Lorene/C++/Source/Etoile/etoile_rot.C,v 1.10 2023/07/04 08:59:53 j_novak Exp $
126  *
127  */
128 
129 // Headers C
130 #include "math.h"
131 
132 // Headers Lorene
133 #include "etoile.h"
134 #include "eos.h"
135 #include "nbr_spx.h"
136 #include "utilitaires.h"
137 #include "unites.h"
138 
139  //--------------//
140  // Constructors //
141  //--------------//
142 
143 // Standard constructor
144 // --------------------
145 namespace Lorene {
146 Etoile_rot::Etoile_rot(Map& mpi, int nzet_i, bool relat, const Eos& eos_i)
147  : Etoile(mpi, nzet_i, relat, eos_i),
148  bbb(mpi),
149  b_car(mpi),
150  nphi(mpi),
151  tnphi(mpi),
152  uuu(mpi),
153  logn(logn_auto),
154  nuf(mpi),
155  nuq(mpi),
156  dzeta(beta_auto),
157  tggg(mpi),
158  w_shift(mpi, 1, CON, mp.get_bvect_cart()),
159  khi_shift(mpi),
160  tkij(mpi, 2, COV, mp.get_bvect_cart()),
161  ak_car(mpi),
162  ssjm1_nuf(mpi),
163  ssjm1_nuq(mpi),
164  ssjm1_dzeta(mpi),
165  ssjm1_tggg(mpi),
166  ssjm1_khi(mpi),
167  ssjm1_wshift(mpi, 1, CON, mp.get_bvect_cart())
168 {
169 
170  // Initialization to a static state :
171  omega = 0 ;
172  uuu = 0 ;
173 
174  // Initialization to a flat metric :
175  bbb = 1 ;
176  bbb.set_std_base() ;
177  b_car = 1 ;
178  b_car.set_std_base() ;
179  nphi = 0 ;
180  tnphi = 0 ;
181  nuf = 0 ;
182  nuq = 0 ;
183  tggg = 0 ;
184 
185  w_shift.set_etat_qcq() ;
186  for (int i=0; i<3; i++) {
187  w_shift.set(i) = 0 ;
188  }
189 
191  khi_shift.set() = 0 ;
192 
193  tkij.set_etat_zero() ;
194 
195  ak_car = 0 ;
196 
197  ssjm1_nuf = 0 ;
198  ssjm1_nuq = 0 ;
199  ssjm1_dzeta = 0 ;
200  ssjm1_tggg = 0 ;
201  ssjm1_khi = 0 ;
202 
204  for (int i=0; i<3; i++) {
205  ssjm1_wshift.set(i) = 0 ;
206  }
207 
208  // Pointers of derived quantities initialized to zero :
209  set_der_0x0() ;
210 
211 }
212 
213 // Copy constructor
214 // ----------------
215 
217  : Etoile(et),
218  bbb(et.bbb),
219  b_car(et.b_car),
220  nphi(et.nphi),
221  tnphi(et.tnphi),
222  uuu(et.uuu),
223  logn(logn_auto),
224  nuf(et.nuf),
225  nuq(et.nuq),
226  dzeta(beta_auto),
227  tggg(et.tggg),
228  w_shift(et.w_shift),
229  khi_shift(et.khi_shift),
230  tkij(et.tkij),
231  ak_car(et.ak_car),
232  ssjm1_nuf(et.ssjm1_nuf),
233  ssjm1_nuq(et.ssjm1_nuq),
234  ssjm1_dzeta(et.ssjm1_dzeta),
235  ssjm1_tggg(et.ssjm1_tggg),
236  ssjm1_khi(et.ssjm1_khi),
237  ssjm1_wshift(et.ssjm1_wshift)
238 {
239  omega = et.omega ;
240 
241  // Pointers of derived quantities initialized to zero :
242  set_der_0x0() ;
243 }
244 
245 
246 // Constructor from a file
247 // -----------------------
248 Etoile_rot::Etoile_rot(Map& mpi, const Eos& eos_i, FILE* fich)
249  : Etoile(mpi, eos_i, fich),
250  bbb(mpi),
251  b_car(mpi),
252  nphi(mpi),
253  tnphi(mpi),
254  uuu(mpi),
255  logn(logn_auto),
256  nuf(mpi),
257  nuq(mpi),
258  dzeta(beta_auto),
259  tggg(mpi),
260  w_shift(mpi, 1, CON, mp.get_bvect_cart()),
261  khi_shift(mpi),
262  tkij(mpi, 2, COV, mp.get_bvect_cart()),
263  ak_car(mpi),
264  ssjm1_nuf(mpi),
265  ssjm1_nuq(mpi),
266  ssjm1_dzeta(mpi),
267  ssjm1_tggg(mpi),
268  ssjm1_khi(mpi),
269  ssjm1_wshift(mpi, 1, CON, mp.get_bvect_cart())
270 {
271 
272  // Etoile parameters
273  // -----------------
274 
275  // omega is read in the file:
276  fread_be(&omega, sizeof(double), 1, fich) ;
277 
278 
279  // Read of the saved fields:
280  // ------------------------
281 
282  Tenseur nuf_file(mp, fich) ;
283  nuf = nuf_file ;
284 
285  Tenseur nuq_file(mp, fich) ;
286  nuq = nuq_file ;
287 
288  Tenseur tggg_file(mp, fich) ;
289  tggg = tggg_file ;
290 
291  Tenseur w_shift_file(mp, mp.get_bvect_cart(), fich) ;
292  w_shift = w_shift_file ;
293 
294  Tenseur khi_shift_file(mp, fich) ;
295  khi_shift = khi_shift_file ;
296 
297  fait_shift() ; // constructs shift from w_shift and khi_shift
298  fait_nphi() ; // constructs N^phi from (N^x,N^y,N^z)
299 
300  Cmp ssjm1_nuf_file(mp, *(mp.get_mg()), fich) ;
301  ssjm1_nuf = ssjm1_nuf_file ;
302 
303  Cmp ssjm1_nuq_file(mp, *(mp.get_mg()), fich) ;
304  ssjm1_nuq = ssjm1_nuq_file ;
305 
306  Cmp ssjm1_dzeta_file(mp, *(mp.get_mg()), fich) ;
307  ssjm1_dzeta = ssjm1_dzeta_file ;
308 
309  Cmp ssjm1_tggg_file(mp, *(mp.get_mg()), fich) ;
310  ssjm1_tggg = ssjm1_tggg_file ;
311 
312  Cmp ssjm1_khi_file(mp, *(mp.get_mg()), fich) ;
313  ssjm1_khi = ssjm1_khi_file ;
314 
315  Tenseur ssjm1_wshift_file(mp, mp.get_bvect_cart(), fich) ;
316  ssjm1_wshift = ssjm1_wshift_file ;
317 
318  // All other fields are initialized to zero :
319  // ----------------------------------------
320  bbb = 0 ;
321  b_car = 0 ;
322  uuu = 0 ;
323 
324  // Pointers of derived quantities initialized to zero
325  // --------------------------------------------------
326  set_der_0x0() ;
327 
328 }
329 
330  //------------//
331  // Destructor //
332  //------------//
333 
335 
336  del_deriv() ;
337 
338 }
339 
340  //----------------------------------//
341  // Management of derived quantities //
342  //----------------------------------//
343 
344 void Etoile_rot::del_deriv() const {
345 
346  Etoile::del_deriv() ;
347 
348  if (p_angu_mom != 0x0) delete p_angu_mom ;
349  if (p_tsw != 0x0) delete p_tsw ;
350  if (p_grv2 != 0x0) delete p_grv2 ;
351  if (p_grv3 != 0x0) delete p_grv3 ;
352  if (p_r_circ != 0x0) delete p_r_circ ;
353  if (p_r_circ_merid != 0x0) delete p_r_circ_merid ;
354  if (p_area != 0x0) delete p_area ;
355  if (p_aplat != 0x0) delete p_aplat ;
356  if (p_z_eqf != 0x0) delete p_z_eqf ;
357  if (p_z_eqb != 0x0) delete p_z_eqb ;
358  if (p_z_pole != 0x0) delete p_z_pole ;
359  if (p_mom_quad != 0x0) delete p_mom_quad ;
360  if (p_mom_quad_old != 0x0) delete p_mom_quad_old ;
361  if (p_mom_quad_Bo != 0x0) delete p_mom_quad_Bo ;
362  if (p_r_isco != 0x0) delete p_r_isco ;
363  if (p_f_isco != 0x0) delete p_f_isco ;
364  if (p_lspec_isco != 0x0) delete p_lspec_isco ;
365  if (p_espec_isco != 0x0) delete p_espec_isco ;
366  if (p_f_eq != 0x0) delete p_f_eq ;
367 
369 }
370 
371 
372 
373 
375 
377 
378  p_angu_mom = 0x0 ;
379  p_tsw = 0x0 ;
380  p_grv2 = 0x0 ;
381  p_grv3 = 0x0 ;
382  p_r_circ = 0x0 ;
383  p_r_circ_merid = 0x0 ;
384  p_area = 0x0 ;
385  p_aplat = 0x0 ;
386  p_z_eqf = 0x0 ;
387  p_z_eqb = 0x0 ;
388  p_z_pole = 0x0 ;
389  p_mom_quad = 0x0 ;
390  p_mom_quad_old = 0x0 ;
391  p_mom_quad_Bo = 0x0 ;
392  p_r_isco = 0x0 ;
393  p_f_isco = 0x0 ;
394  p_lspec_isco = 0x0 ;
395  p_espec_isco = 0x0 ;
396  p_f_eq = 0x0 ;
397 
398 }
399 
401 
403 
404  del_deriv() ;
405 
406 }
407 
408 
409  //--------------//
410  // Assignment //
411  //--------------//
412 
413 // Assignment to another Etoile_rot
414 // --------------------------------
416 
417  // Assignment of quantities common to all the derived classes of Etoile
418  Etoile::operator=(et) ;
419 
420  // Assignement of proper quantities of class Etoile_rot
421  omega = et.omega ;
422 
423  bbb = et.bbb ;
424  b_car = et.b_car ;
425  nphi = et.nphi ;
426  tnphi = et.tnphi ;
427  uuu = et.uuu ;
428  nuf = et.nuf ;
429  nuq = et.nuq ;
430  tggg = et.tggg ;
431  w_shift = et.w_shift ;
432  khi_shift = et.khi_shift ;
433  tkij = et.tkij ;
434  ak_car = et.ak_car ;
435  ssjm1_nuf = et.ssjm1_nuf ;
436  ssjm1_nuq = et.ssjm1_nuq ;
437  ssjm1_dzeta = et.ssjm1_dzeta ;
438  ssjm1_tggg = et.ssjm1_tggg ;
439  ssjm1_khi = et.ssjm1_khi ;
440  ssjm1_wshift = et.ssjm1_wshift ;
441 
442  del_deriv() ; // Deletes all derived quantities
443 
444 }
445 
446  //--------------//
447  // Outputs //
448  //--------------//
449 
450 // Save in a file
451 // --------------
452 void Etoile_rot::sauve(FILE* fich) const {
453 
454  Etoile::sauve(fich) ;
455 
456  fwrite_be(&omega, sizeof(double), 1, fich) ;
457 
458  nuf.sauve(fich) ;
459  nuq.sauve(fich) ;
460  tggg.sauve(fich) ;
461  w_shift.sauve(fich) ;
462  khi_shift.sauve(fich) ;
463 
464  ssjm1_nuf.sauve(fich) ;
465  ssjm1_nuq.sauve(fich) ;
466  ssjm1_dzeta.sauve(fich) ;
467  ssjm1_tggg.sauve(fich) ;
468  ssjm1_khi.sauve(fich) ;
469  ssjm1_wshift.sauve(fich) ;
470 
471 
472 }
473 
474 // Printing
475 // --------
476 
477 ostream& Etoile_rot::operator>>(ostream& ost) const {
478 
479  using namespace Unites ;
480 
481  Etoile::operator>>(ost) ;
482 
483  double omega_c = get_omega_c() ;
484 
485  ost << endl ;
486  if (omega != __infinity) {
487  ost << "Uniformly rotating star" << endl ;
488  ost << "-----------------------" << endl ;
489 
490  double freq = omega / (2.*M_PI) ;
491  ost << "Omega : " << omega * f_unit
492  << " rad/s f : " << freq * f_unit << " Hz" << endl ;
493  ost << "Rotation period : " << 1000. / (freq * f_unit) << " ms"
494  << endl ;
495 
496  }
497  else {
498  ost << "Differentially rotating star" << endl ;
499  ost << "----------------------------" << endl ;
500 
501  double freq = omega_c / (2.*M_PI) ;
502  ost << "Central value of Omega : " << omega_c * f_unit
503  << " rad/s f : " << freq * f_unit << " Hz" << endl ;
504  ost << "Central rotation period : " << 1000. / (freq * f_unit) << " ms"
505  << endl ;
506 
507  }
508 
509 
510  double nphi_c = nphi()(0, 0, 0, 0) ;
511  if ( (omega_c==0) && (nphi_c==0) ) {
512  ost << "Central N^phi : " << nphi_c << endl ;
513  }
514  else{
515  ost << "Central N^phi/Omega : " << nphi_c / omega_c << endl ;
516  }
517 
518  ost << "Error on the virial identity GRV2 : " << endl ;
519  ost << "GRV2 = " << grv2() << endl ;
520  ost << "Error on the virial identity GRV3 : " << endl ;
521  double xgrv3 = grv3(&ost) ;
522  ost << "GRV3 = " << xgrv3 << endl ;
523 
524  double mom_quad_38si = mom_quad() * rho_unit * (pow(r_unit, double(5.))
525  / double(1.e38) ) ;
526  ost << "Quadrupole moment Q : " << mom_quad_38si << " 10^38 kg m^2"
527  << endl ;
528  ost << "Q / (M R_circ^2) : "
529  << mom_quad() / ( mass_g() * pow( r_circ(), 2. ) ) << endl ;
530  ost << "c^4 Q / (G^2 M^3) : "
531  << mom_quad() / ( pow(qpig/(4*M_PI), 2.) * pow(mass_g(), 3.) )
532  << endl ;
533 
534  ost << "Angular momentum J : "
535  << angu_mom()/( qpig / (4* M_PI) * msol*msol) << " G M_sol^2 / c"
536  << endl ;
537  ost << "c J / (G M^2) : "
538  << angu_mom()/( qpig / (4* M_PI) * pow(mass_g(), 2.) ) << endl ;
539 
540  if (omega != __infinity) {
541  double mom_iner = angu_mom() / omega ;
542  double mom_iner_38si = mom_iner * rho_unit * (pow(r_unit, double(5.))
543  / double(1.e38) ) ;
544  ost << "Moment of inertia: " << mom_iner_38si << " 10^38 kg m^2"
545  << endl ;
546  }
547 
548  ost << "Ratio T/W : " << tsw() << endl ;
549  ost << "Circumferential equatorial radius R_circ_eq : "
550  << r_circ()/km << " km" << endl ;
551  if (mp.get_mg()->get_np(0) == 1) {
552  ost << "Circumferential meridional radius R_circ_merid : "
553  << r_circ_merid()/km << " km" << endl ;
554  ost << "Flattening r_circ_merid/r_circ_eq : "
555  << r_circ_merid() / r_circ() << endl ;
556  ost << "Surface area : " << area()/(km*km) << " km^2" << endl ;
557  ost << "Mean radius R_mean : "
558  << mean_radius()/km << " km" << endl ;
559  } else {
560  ost <<
561  "Skipping polar radius / surface statements due to number of points in phi direction np > 1"
562  << endl;
563  }
564  ost << "Coordinate equatorial radius r_eq : " << ray_eq()/km << " km"
565  << endl ;
566  ost << "Flattening r_pole/r_eq : " << aplat() << endl ;
567 
568  double compact = qpig/(4.*M_PI) * mass_g() / r_circ() ;
569  ost << "Compaction parameter M_g / R_circ : " << compact << endl ;
570 
571  int lsurf = nzet - 1;
572  int nt = mp.get_mg()->get_nt(lsurf) ;
573  int nr = mp.get_mg()->get_nr(lsurf) ;
574  ost << "Equatorial value of the velocity U: "
575  << uuu()(nzet-1, 0, nt-1, nr-1) << " c" << endl ;
576  ost << "Redshift at the equator (forward) : " << z_eqf() << endl ;
577  ost << "Redshift at the equator (backward): " << z_eqb() << endl ;
578  ost << "Redshift at the pole : " << z_pole() << endl ;
579 
580 
581  ost << "Central value of log(N) : "
582  << logn()(0, 0, 0, 0) << endl ;
583 
584  ost << "Central value of dzeta=log(AN) : "
585  << dzeta()(0, 0, 0, 0) << endl ;
586 
587  if ( (omega_c==0) && (nphi_c==0) ) {
588  ost << "Central N^phi : " << nphi_c << endl ;
589  }
590  else{
591  ost << "Central N^phi/Omega : " << nphi_c / omega_c << endl ;
592  }
593 
594  ost << " ... w_shift (NB: components in the star Cartesian frame) [c] : "
595  << endl
596  << w_shift(0)(0, 0, 0, 0) << " "
597  << w_shift(1)(0, 0, 0, 0) << " "
598  << w_shift(2)(0, 0, 0, 0) << endl ;
599 
600  ost << "Central value of khi_shift [km c] : "
601  << khi_shift()(0, 0, 0, 0) / km << endl ;
602 
603  ost << "Central value of B^2 : " << b_car()(0,0,0,0) << endl ;
604 
605  Tbl diff_a_b = diffrel( a_car(), b_car() ) ;
606  ost <<
607  "Relative discrepancy in each domain between the metric coef. A^2 and B^2 : "
608  << endl ;
609  for (int l=0; l<diff_a_b.get_taille(); l++) {
610  ost << diff_a_b(l) << " " ;
611  }
612  ost << endl ;
613 
614  // Approximate formula for R_isco = 6 R_g (1-(2/3)^1.5 j )
615  // up to the first order in j
616  double jdimless = angu_mom() / ( ggrav * pow(mass_g(), 2.) ) ;
617  double r_grav = ggrav * mass_g() ;
618  double r_isco_appr = 6. * r_grav * ( 1. - pow(2./3.,1.5) * jdimless ) ;
619 
620  // Approximate formula for the ISCO frequency
621  // freq_ms = 6^{-1.5}/2pi/R_g (1+11*6^(-1.5) j )
622  // up to the first order in j
623  double f_isco_appr = ( 1. + 11. /6. /sqrt(6.) * jdimless ) / r_grav /
624  (12. * M_PI ) / sqrt(6.) ;
625 
626  ost << endl << "Innermost stable circular orbit (ISCO) : " << endl ;
627  double xr_isco = r_isco(&ost) ;
628  ost <<" circumferential radius r_isco = "
629  << xr_isco / km << " km" << endl ;
630  ost <<" (approx. 6M + 1st order in j : "
631  << r_isco_appr / km << " km)" << endl ;
632  ost <<" (approx. 6M : "
633  << 6. * r_grav / km << " km)" << endl ;
634  ost <<" orbital frequency f_isco = "
635  << f_isco() * f_unit << " Hz" << endl ;
636  ost <<" (approx. 1st order in j : "
637  << f_isco_appr * f_unit << " Hz)" << endl ;
638 
639 
640  return ost ;
641 
642 }
643 
644 
645 void Etoile_rot::partial_display(ostream& ost) const {
646 
647  using namespace Unites ;
648 
649  double omega_c = get_omega_c() ;
650  double freq = omega_c / (2.*M_PI) ;
651  ost << "Central Omega : " << omega_c * f_unit
652  << " rad/s f : " << freq * f_unit << " Hz" << endl ;
653  ost << "Rotation period : " << 1000. / (freq * f_unit) << " ms"
654  << endl ;
655  ost << endl << "Central enthalpy : " << ent()(0,0,0,0) << " c^2" << endl ;
656  ost << "Central proper baryon density : " << nbar()(0,0,0,0)
657  << " x 0.1 fm^-3" << endl ;
658  ost << "Central proper energy density : " << ener()(0,0,0,0)
659  << " rho_nuc c^2" << endl ;
660  ost << "Central pressure : " << press()(0,0,0,0)
661  << " rho_nuc c^2" << endl ;
662 
663  ost << "Central value of log(N) : "
664  << logn()(0, 0, 0, 0) << endl ;
665  ost << "Central lapse N : " << nnn()(0,0,0,0) << endl ;
666  ost << "Central value of dzeta=log(AN) : "
667  << dzeta()(0, 0, 0, 0) << endl ;
668  ost << "Central value of A^2 : " << a_car()(0,0,0,0) << endl ;
669  ost << "Central value of B^2 : " << b_car()(0,0,0,0) << endl ;
670 
671  double nphi_c = nphi()(0, 0, 0, 0) ;
672  if ( (omega_c==0) && (nphi_c==0) ) {
673  ost << "Central N^phi : " << nphi_c << endl ;
674  }
675  else{
676  ost << "Central N^phi/Omega : " << nphi_c / omega_c
677  << endl ;
678  }
679 
680 
681  int lsurf = nzet - 1;
682  int nt = mp.get_mg()->get_nt(lsurf) ;
683  int nr = mp.get_mg()->get_nr(lsurf) ;
684  ost << "Equatorial value of the velocity U: "
685  << uuu()(nzet-1, 0, nt-1, nr-1) << " c" << endl ;
686 
687  ost << endl
688  << "Coordinate equatorial radius r_eq = "
689  << ray_eq()/km << " km" << endl ;
690  ost << "Flattening r_pole/r_eq : " << aplat() << endl ;
691  if (mp.get_mg()->get_np(0) == 1)
692  ost << "Flattening r_circ_pole/r_circ_eq : "
693  << r_circ_merid() / r_circ() << endl ;
694 
695 }
696 
697 
698 double Etoile_rot::get_omega_c() const {
699 
700  return omega ;
701 
702 }
703 
704 
705 // display_poly
706 // ------------
707 
708 void Etoile_rot::display_poly(ostream& ost) const {
709 
710  using namespace Unites ;
711 
712  const Eos_poly* p_eos_poly = dynamic_cast<const Eos_poly*>( &eos ) ;
713 
714  if (p_eos_poly != 0x0) {
715 
716  double kappa = p_eos_poly->get_kap() ;
717  double gamma = p_eos_poly->get_gam() ; ;
718 
719  // kappa^{n/2}
720  double kap_ns2 = pow( kappa, 0.5 /(gamma-1) ) ;
721 
722  // Polytropic unit of length in terms of r_unit :
723  double r_poly = kap_ns2 / sqrt(ggrav) ;
724 
725  // Polytropic unit of time in terms of t_unit :
726  double t_poly = r_poly ;
727 
728  // Polytropic unit of mass in terms of m_unit :
729  double m_poly = r_poly / ggrav ;
730 
731  // Polytropic unit of angular momentum in terms of j_unit :
732  double j_poly = r_poly * r_poly / ggrav ;
733 
734  // Polytropic unit of density in terms of rho_unit :
735  double rho_poly = 1. / (ggrav * r_poly * r_poly) ;
736 
737  ost.precision(10) ;
738  ost << endl << "Quantities in polytropic units : " << endl ;
739  ost << "==============================" << endl ;
740  ost << " ( r_poly = " << r_poly / km << " km )" << endl ;
741  ost << " n_c : " << nbar()(0, 0, 0, 0) / rho_poly << endl ;
742  ost << " e_c : " << ener()(0, 0, 0, 0) / rho_poly << endl ;
743  ost << " Omega_c : " << get_omega_c() * t_poly << endl ;
744  ost << " P_c : " << 2.*M_PI / get_omega_c() / t_poly << endl ;
745  ost << " M_bar : " << mass_b() / m_poly << endl ;
746  ost << " M : " << mass_g() / m_poly << endl ;
747  ost << " J : " << angu_mom() / j_poly << endl ;
748  ost << " r_eq : " << ray_eq() / r_poly << endl ;
749  ost << " R_circ : " << r_circ() / r_poly << endl ;
750 
751 
752  }
753 
754 
755 }
756 
757 
758 
759 
760 
761 
762  //-------------------------//
763  // Computational routines //
764  //-------------------------//
765 
767 
768  Tenseur d_khi = khi_shift.gradient() ;
769 
770  if (d_khi.get_etat() == ETATQCQ) {
771  d_khi.dec2_dzpuis() ; // divide by r^2 in the external compactified
772  // domain
773  }
774 
775  // x_k dW^k/dx_i
776 
777  Tenseur x_d_w = skxk( w_shift.gradient() ) ;
778  x_d_w.dec_dzpuis() ;
779 
780  double lambda = double(1) / double(3) ;
781 
782  if ( mp.get_mg()->get_np(0) == 1 ) {
783  lambda = 0 ;
784  }
785 
786  // The final computation is done component by component because
787  // d_khi and x_d_w are covariant comp. whereas w_shift is
788  // contravariant
789 
790  shift.set_etat_qcq() ;
791 
792  for (int i=0; i<3; i++) {
793  shift.set(i) = (lambda+2)/2./(lambda+1) * w_shift(i)
794  - (lambda/2./(lambda+1)) * (d_khi(i) + x_d_w(i)) ;
795  }
796 
797  shift.set_triad( *(w_shift.get_triad()) ) ;
798 
799 }
800 
801 
802 
804 
805  if ( shift.get_etat() == ETATZERO ) {
806  tnphi = 0 ;
807  nphi = 0 ;
808  return ;
809  }
810 
811  assert( shift.get_etat() == ETATQCQ ) ;
812 
813  // Computation of tnphi
814  // --------------------
815  tnphi.set_etat_qcq() ;
816 
817  mp.comp_p_from_cartesian( shift(0), shift(1), tnphi.set() ) ;
818 
819  // Computation of nphi
820  // -------------------
821 
822  nphi = tnphi ;
823  (nphi.set()).div_rsint() ;
824 
825 }
826 }
double * p_z_eqb
Backward redshift factor at equator.
Definition: etoile.h:1643
virtual double z_eqf() const
Forward redshift factor at equator.
virtual void set_der_0x0() const
Sets to 0x0 all the pointers on derived quantities.
Definition: etoile.C:399
double * p_z_pole
Redshift factor at North pole.
Definition: etoile.h:1644
Base class for stars *** DEPRECATED : use class Star instead ***.
Definition: etoile.h:427
virtual double r_circ() const
Circumferential equatorial radius.
virtual ostream & operator>>(ostream &) const
Operator >> (virtual function called by the operator <<).
Definition: etoile.C:514
double * p_mom_quad_old
Part of the quadrupole moment.
Definition: etoile.h:1646
Tenseur khi_shift
Scalar used in the decomposition of shift , following Shibata&#39;s prescription [Prog.
Definition: etoile.h:1563
double * p_r_circ
Circumferential equatorial radius.
Definition: etoile.h:1638
Cmp ssjm1_khi
Effective source at the previous step for the resolution of the Poisson equation for the scalar by m...
Definition: etoile.h:1619
double * p_mom_quad_Bo
Part of the quadrupole moment.
Definition: etoile.h:1647
Component of a tensorial field *** DEPRECATED : use class Scalar instead ***.
Definition: cmp.h:446
double * p_r_isco
Circumferential radius of the ISCO.
Definition: etoile.h:1648
Tenseur tnphi
Component of the shift vector.
Definition: etoile.h:1518
void dec2_dzpuis()
dzpuis -= 2 ;
Definition: tenseur.C:1146
void set_triad(const Base_vect &new_triad)
Assigns a new vectorial basis (triad) of decomposition.
Definition: tenseur.C:690
int get_np(int l) const
Returns the number of points in the azimuthal direction ( ) in domain no. l.
Definition: grilles.h:479
Cmp sqrt(const Cmp &)
Square root.
Definition: cmp_math.C:223
virtual void display_poly(ostream &) const
Display in polytropic units.
Definition: etoile_rot.C:708
void set_std_base()
Set the standard spectal basis of decomposition for each component.
Definition: tenseur.C:1186
virtual void sauve(FILE *) const
Save in a file.
Definition: etoile.C:486
void fait_nphi()
Computes tnphi and nphi from the Cartesian components of the shift, stored in shift ...
Definition: etoile_rot.C:803
void operator=(const Etoile &)
Assignment to another Etoile.
Definition: etoile.C:433
Lorene prototypes.
Definition: app_hor.h:67
Tenseur w_shift
Vector used in the decomposition of shift , following Shibata&#39;s prescription [Prog.
Definition: etoile.h:1553
Standard units of space, time and mass.
Equation of state base class.
Definition: eos.h:209
virtual void comp_p_from_cartesian(const Scalar &v_x, const Scalar &v_y, Scalar &v_p) const =0
Computes the Spherical component (with respect to bvect_spher ) of a vector given by its cartesian c...
Tenseur ssjm1_wshift
Effective source at the previous step for the resolution of the vector Poisson equation for ...
Definition: etoile.h:1628
const Mg3d * get_mg() const
Gives the Mg3d on which the mapping is defined.
Definition: map.h:777
Tenseur nnn
Total lapse function.
Definition: etoile.h:512
double * p_z_eqf
Forward redshift factor at equator.
Definition: etoile.h:1642
Tenseur nphi
Metric coefficient .
Definition: etoile.h:1513
double ray_eq() const
Coordinate radius at , [r_unit].
Base class for coordinate mappings.
Definition: map.h:682
Class for isolated rotating stars *** DEPRECATED : use class Star_rot instead ***.
Definition: etoile.h:1499
double * p_mom_quad
Quadrupole moment.
Definition: etoile.h:1645
Tenseur b_car
Square of the metric factor B.
Definition: etoile.h:1510
void operator=(const Etoile_rot &)
Assignment to another Etoile_rot.
Definition: etoile_rot.C:415
virtual double r_isco(ostream *ost=0x0) const
Circumferential radius of the innermost stable circular orbit (ISCO).
Definition: et_rot_isco.C:87
Tenseur press
Fluid pressure.
Definition: etoile.h:464
Etoile_rot(Map &mp_i, int nzet_i, bool relat, const Eos &eos_i)
Standard constructor.
Definition: etoile_rot.C:146
virtual double mean_radius() const
Mean radius.
Tenseur shift
Total shift vector.
Definition: etoile.h:515
Tbl diffrel(const Cmp &a, const Cmp &b)
Relative difference between two Cmp (norme version).
Definition: cmp_math.C:507
double * p_aplat
Flatening r_pole/r_eq.
Definition: etoile.h:1641
double get_gam() const
Returns the adiabatic index (cf. Eq. (3))
Definition: eos_poly.C:271
virtual void del_deriv() const
Deletes all the derived quantities.
Definition: etoile_rot.C:344
virtual double r_circ_merid() const
Circumferential meridional radius.
virtual void del_deriv() const
Deletes all the derived quantities.
Definition: etoile.C:381
virtual double get_omega_c() const
Returns the central value of the rotation angular velocity ([f_unit] )
Definition: etoile_rot.C:698
Cmp ssjm1_dzeta
Effective source at the previous step for the resolution of the Poisson equation for dzeta ...
Definition: etoile.h:1606
Cmp & set()
Read/write for a scalar (see also operator=(const Cmp&) ).
Definition: tenseur.C:840
Cmp ssjm1_nuq
Effective source at the previous step for the resolution of the Poisson equation for nuq by means of ...
Definition: etoile.h:1601
double * p_r_circ_merid
Circumferential meridional radius.
Definition: etoile.h:1639
virtual ostream & operator>>(ostream &) const
Operator >> (virtual function called by the operator <<).
Definition: etoile_rot.C:477
virtual ~Etoile_rot()
Destructor.
Definition: etoile_rot.C:334
double * p_grv3
Error on the virial identity GRV3.
Definition: etoile.h:1637
virtual double angu_mom() const
Angular momentum.
void sauve(FILE *) const
Save in a file.
Definition: tenseur.C:1341
Tenseur skxk(const Tenseur &)
Contraction of the last index of (*this) with or , depending on the type of S .
double get_kap() const
Returns the pressure coefficient (cf.
Definition: eos_poly.C:275
virtual double z_pole() const
Redshift factor at North pole.
Tenseur nbar
Baryon density in the fluid frame.
Definition: etoile.h:462
const Base_vect * get_triad() const
Returns the vectorial basis (triad) on which the components are defined.
Definition: tenseur.h:707
virtual double grv3(ostream *ost=0x0) const
Error on the virial identity GRV3.
virtual void sauve(FILE *) const
Save in a file.
Definition: etoile_rot.C:452
double * p_tsw
Ratio T/W.
Definition: etoile.h:1635
virtual double grv2() const
Error on the virial identity GRV2.
virtual double mass_b() const
Baryon mass.
double * p_area
Surface area.
Definition: etoile.h:1640
Polytropic equation of state (relativistic case).
Definition: eos.h:812
Map & mp
Mapping associated with the star.
Definition: etoile.h:432
const Eos & eos
Equation of state of the stellar matter.
Definition: etoile.h:454
virtual double z_eqb() const
Backward redshift factor at equator.
Cmp ssjm1_nuf
Effective source at the previous step for the resolution of the Poisson equation for nuf by means of ...
Definition: etoile.h:1595
Tenseur ak_car
Scalar .
Definition: etoile.h:1589
int get_etat() const
Returns the logical state.
Definition: tenseur.h:710
double * p_f_isco
Orbital frequency of the ISCO.
Definition: etoile.h:1649
virtual double tsw() const
Ratio T/W.
Tenseur bbb
Metric factor B.
Definition: etoile.h:1507
int fwrite_be(const int *aa, int size, int nb, FILE *fich)
Writes integer(s) into a binary file according to the big endian convention.
Definition: fwrite_be.C:73
Cmp pow(const Cmp &, int)
Power .
Definition: cmp_math.C:351
Tenseur uuu
Norm of u_euler.
Definition: etoile.h:1521
Tenseur tggg
Metric potential .
Definition: etoile.h:1540
double omega
Rotation angular velocity ([f_unit] )
Definition: etoile.h:1504
virtual void partial_display(ostream &) const
Printing of some informations, excluding all global quantities.
Definition: etoile_rot.C:645
Tenseur nuf
Part of the Metric potential = logn generated by the matter terms.
Definition: etoile.h:1529
int nzet
Number of domains of *mp occupied by the star.
Definition: etoile.h:435
virtual double mom_quad() const
Quadrupole moment.
int fread_be(int *aa, int size, int nb, FILE *fich)
Reads integer(s) from a binary file according to the big endian convention.
Definition: fread_be.C:72
int get_nr(int l) const
Returns the number of points in the radial direction ( ) in domain no. l.
Definition: grilles.h:469
Tenseur a_car
Total conformal factor .
Definition: etoile.h:518
void fait_shift()
Computes shift from w_shift and khi_shift according to Shibata&#39;s prescription [Prog.
Definition: etoile_rot.C:766
Tenseur ener
Total energy density in the fluid frame.
Definition: etoile.h:463
const Base_vect_cart & get_bvect_cart() const
Returns the Cartesian basis associated with the coordinates (x,y,z) of the mapping, i.e.
Definition: map.h:803
void dec_dzpuis()
dzpuis -= 1 ;
Definition: tenseur.C:1120
Tenseur ent
Log-enthalpy (relativistic case) or specific enthalpy (Newtonian case)
Definition: etoile.h:460
virtual void del_hydro_euler()
Sets to ETATNONDEF (undefined state) the hydrodynamical quantities relative to the Eulerian observer...
Definition: etoile.C:413
virtual double area() const
Surface area.
Tenseur & logn
Metric potential = logn_auto.
Definition: etoile.h:1524
double * p_lspec_isco
Specific angular momentum of a particle on the ISCO.
Definition: etoile.h:1653
virtual void set_der_0x0() const
Sets to 0x0 all the pointers on derived quantities.
Definition: etoile_rot.C:374
Basic array class.
Definition: tbl.h:164
int get_nt(int l) const
Returns the number of points in the co-latitude direction ( ) in domain no. l.
Definition: grilles.h:474
virtual double mass_g() const
Gravitational mass.
double * p_grv2
Error on the virial identity GRV2.
Definition: etoile.h:1636
void set_etat_qcq()
Sets the logical state to ETATQCQ (ordinary state).
Definition: tenseur.C:652
void sauve(FILE *) const
Save in a file.
Definition: cmp.C:564
virtual void del_hydro_euler()
Sets to ETATNONDEF (undefined state) the hydrodynamical quantities relative to the Eulerian observer...
Definition: etoile_rot.C:400
Tenseur nuq
Part of the Metric potential = logn generated by the quadratic terms.
Definition: etoile.h:1534
void set_etat_zero()
Sets the logical state to ETATZERO (zero state).
Definition: tenseur.C:661
virtual double f_isco() const
Orbital frequency at the innermost stable circular orbit (ISCO).
Definition: et_rot_isco.C:270
Tenseur & dzeta
Metric potential = beta_auto.
Definition: etoile.h:1537
Cmp ssjm1_tggg
Effective source at the previous step for the resolution of the Poisson equation for tggg ...
Definition: etoile.h:1611
Tenseur_sym tkij
Tensor related to the extrinsic curvature tensor by .
Definition: etoile.h:1570
Tensor handling *** DEPRECATED : use class Tensor instead ***.
Definition: tenseur.h:304
double * p_espec_isco
Specific energy of a particle on the ISCO.
Definition: etoile.h:1651
const Tenseur & gradient() const
Returns the gradient of *this (Cartesian coordinates)
Definition: tenseur.C:1558
double * p_angu_mom
Angular momentum.
Definition: etoile.h:1634
virtual double aplat() const
Flatening r_pole/r_eq.
double * p_f_eq
Orbital frequency at the equator.
Definition: etoile.h:1654