Lorene::Eos_poly Class Reference
[Equations of state]

Polytropic equation of state (relativistic case). More...

#include <eos.h>

Inheritance diagram for Lorene::Eos_poly:
Lorene::Eos Lorene::Eos_poly_newt

List of all members.

Public Member Functions

 Eos_poly (double gamma, double kappa)
 Standard constructor (sets both m_0 and mu_0 to 1).
 Eos_poly (double gamma, double kappa, double mass)
 Standard constructor with individual particle mass (sets mu_0 to 1).
 Eos_poly (double gamma, double kappa, double mass, double mu_zero)
 Standard constructor with individual particle mass and zero-pressure chemical potential.
 Eos_poly (const Eos_poly &)
 Copy constructor.
virtual ~Eos_poly ()
 Destructor.
void operator= (const Eos_poly &)
 Assignment to another Eos_poly.
virtual bool operator== (const Eos &) const
 Comparison operator (egality).
virtual bool operator!= (const Eos &) const
 Comparison operator (difference).
virtual int identify () const
 Returns a number to identify the sub-classe of Eos the object belongs to.
double get_gam () const
 Returns the adiabatic index $\gamma$ (cf. Eq. (3)).
double get_kap () const
 Returns the pressure coefficient $\kappa$ (cf.
double get_m_0 () const
 Return the individual particule mass $m_0$ (cf.
double get_mu_0 () const
 Return the relativistic chemical potential at zero pressure [unit: $m_B c^2$, with $m_B = 1.66\ 10^{-27} \ {\rm kg}$].
virtual void sauve (FILE *) const
 Save in a file.
virtual double nbar_ent_p (double ent, const Param *par=0x0) const
 Computes the baryon density from the log-enthalpy.
virtual double ener_ent_p (double ent, const Param *par=0x0) const
 Computes the total energy density from the log-enthalpy.
virtual double press_ent_p (double ent, const Param *par=0x0) const
 Computes the pressure from the log-enthalpy.
virtual double der_nbar_ent_p (double ent, const Param *par=0x0) const
 Computes the logarithmic derivative $d\ln n/d\ln H$ from the log-enthalpy.
virtual double der_ener_ent_p (double ent, const Param *par=0x0) const
 Computes the logarithmic derivative $d\ln e/d\ln H$ from the log-enthalpy.
virtual double der_press_ent_p (double ent, const Param *par=0x0) const
 Computes the logarithmic derivative $d\ln p/d\ln H$ from the log-enthalpy.
const char * get_name () const
 Returns the EOS name.
void set_name (const char *name_i)
 Sets the EOS name.
virtual bool operator== (const Eos &) const =0
 Comparison operator (egality).
virtual bool operator!= (const Eos &) const =0
 Comparison operator (difference).
Cmp nbar_ent (const Cmp &ent, int nzet, int l_min=0, Param *par=0x0) const
 Computes the baryon density field from the log-enthalpy field and extra parameters.
Scalar nbar_ent (const Scalar &ent, int nzet, int l_min=0, Param *par=0x0) const
 Computes the baryon density field from the log-enthalpy field and extra parameters.
Cmp ener_ent (const Cmp &ent, int nzet, int l_min=0, Param *par=0x0) const
 Computes the total energy density from the log-enthalpy and extra parameters.
Scalar ener_ent (const Scalar &ent, int nzet, int l_min=0, Param *par=0x0) const
 Computes the total energy density from the log-enthalpy and extra parameters.
Cmp press_ent (const Cmp &ent, int nzet, int l_min=0, Param *par=0x0) const
 Computes the pressure from the log-enthalpy and extra parameters.
Scalar press_ent (const Scalar &ent, int nzet, int l_min=0, Param *par=0x0) const
 Computes the pressure from the log-enthalpy and extra parameters.
Cmp der_nbar_ent (const Cmp &ent, int nzet, int l_min=0, Param *par=0x0) const
 Computes the logarithmic derivative $d\ln n/d\ln H$ from the log-enthalpy and extra parameters.
Scalar der_nbar_ent (const Scalar &ent, int nzet, int l_min=0, Param *par=0x0) const
 Computes the logarithmic derivative $d\ln n/d\ln H$ from the log-enthalpy and extra parameters.
Cmp der_ener_ent (const Cmp &ent, int nzet, int l_min=0, Param *par=0x0) const
 Computes the logarithmic derivative $d\ln e/d\ln H$ from the log-enthalpy and extra parameters.
Scalar der_ener_ent (const Scalar &ent, int nzet, int l_min=0, Param *par=0x0) const
 Computes the logarithmic derivative $d\ln e/d\ln H$ from the log-enthalpy and extra parameters.
Cmp der_press_ent (const Cmp &ent, int nzet, int l_min=0, Param *par=0x0) const
 Computes the logarithmic derivative $d\ln p/d\ln H$ from the log-enthalpy and extra parameters.
Scalar der_press_ent (const Scalar &ent, int nzet, int l_min=0, Param *par=0x0) const
 Computes the logarithmic derivative $d\ln p/d\ln H$ from the log-enthalpy and extra parameters.

Static Public Member Functions

static Eoseos_from_file (FILE *)
 Construction of an EOS from a binary file.
static Eoseos_from_file (ifstream &)
 Construction of an EOS from a formatted file.

Protected Member Functions

 Eos_poly (FILE *)
 Constructor from a binary file (created by the function sauve(FILE*) ).
 Eos_poly (ifstream &)
 Constructor from a formatted file.
void set_auxiliary ()
 Computes the auxiliary quantities gam1 , unsgam1 , gam1sgamkap from the values of gam and kap.
virtual ostream & operator>> (ostream &) const
 Operator >>.
void calcule (const Cmp &thermo, int nzet, int l_min, double(Eos::*fait)(double, const Param *) const, Param *par, Cmp &resu) const
 General computational method for Cmp 's.
void calcule (const Scalar &thermo, int nzet, int l_min, double(Eos::*fait)(double, const Param *) const, Param *par, Scalar &resu) const
 General computational method for Scalar 's.

Protected Attributes

double gam
 Adiabatic index $\gamma$ (cf. Eq. (3)).
double kap
 Pressure coefficient $\kappa$ (cf.
double m_0
 Individual particule mass $m_0$ (cf.
double mu_0
 Relativistic chemical potential at zero pressure [unit: $m_B c^2$, with $m_B = 1.66\ 10^{-27} \ {\rm kg}$].
double gam1
 $\gamma-1$
double unsgam1
 $1/(\gamma-1)$
double gam1sgamkap
 $(\gamma-1) / (\gamma \kappa) m_0$
double rel_mu_0
 $\mu_0/m_0$
double ent_0
 Enthalpy at zero pressure ($\ln (\mu_0/m_0)$).
char name [100]
 EOS name.

Friends

EosEos::eos_from_file (FILE *)
 The construction functions from a file.
EosEos::eos_from_file (ifstream &)
ostream & operator<< (ostream &, const Eos &)
 Display.

Detailed Description

Polytropic equation of state (relativistic case).

This equation of state (EOS) corresponds to identical relativistic particles of rest mass is $m_0$, whose total energy density e is related to their numerical density n by

\[ e(n) = {\kappa \over \gamma-1} n^\gamma + \mu_0 \, n \ , \qquad \qquad (1) \]

where $\mu_0$ is the chemical potential at zero pressure. The relativistic (i.e. including rest mass energy) chemical potential is then

\[ \mu(n) := {de\over dn} = {\kappa \gamma \over \gamma-1} n^{\gamma-1} + \mu_0 \ .\qquad \qquad (2) \]

The pressure is given by the (zero-temperature) First Law of Thermodynamics: $p = \mu n - e$, so that

\[ p(n) = \kappa n^\gamma \ . \qquad \qquad (3) \]

The log-enthalpy is defined as the logarithm of the ratio of the enthalpy par particle by the partical rest mass energy :

\[ H(n) := c^2 \ln \left( {e+p \over m_0 c^2\, n} \right) \ . \qquad \qquad (4) \]

According to the (zero-temperature) First Law of Thermodynamics, the log-enthalpy is related to the chemical potential by

\[ H = c^2 \ln \left( {\mu \over m_0 c^2} \right) \ . \qquad \qquad (5) \]

From this expression and relation (2), the expression of the particle density in term of the log-enthalpy is

\[ n(H) = \left[ {\gamma-1\over \gamma} {m_0 c^2 \over \kappa} \left( \exp(H) - {\mu_0\over m_0 c^2} \right) \right] ^{1/(\gamma-1)} \ . \qquad \qquad (6) \]

The energy density and pressure as functions of H can then be obtained by inserting this relation into Eqs. (1) and (3).

()

Definition at line 762 of file eos.h.


Constructor & Destructor Documentation

Lorene::Eos_poly::Eos_poly ( double  gamma,
double  kappa 
)

Standard constructor (sets both m_0 and mu_0 to 1).

The individual particle mass $m_0$ is set to the mean baryon mass $m_B = 1.66\ 10^{-27} \ {\rm kg}$.

Parameters:
gamma adiabatic index $\gamma$ (cf. Eq. (3))
kappa pressure coefficient $\kappa$ (cf. Eq. (3)) [unit: $\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$ and $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$

Definition at line 129 of file eos_poly.C.

References set_auxiliary().

Lorene::Eos_poly::Eos_poly ( double  gamma,
double  kappa,
double  mass 
)

Standard constructor with individual particle mass (sets mu_0 to 1).

Parameters:
gamma adiabatic index $\gamma$ (cf. Eq. (3))
kappa pressure coefficient $\kappa$ (cf. Eq. (3)) [unit: $\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$ and $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$
mass individual particule mass $m_0$ (cf. Eq. (1) [unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$]

Definition at line 139 of file eos_poly.C.

References set_auxiliary().

Lorene::Eos_poly::Eos_poly ( double  gamma,
double  kappa,
double  mass,
double  mu_zero 
)

Standard constructor with individual particle mass and zero-pressure chemical potential.

Parameters:
gamma adiabatic index $\gamma$ (cf. Eq. (3))
kappa pressure coefficient $\kappa$ (cf. Eq. (3)) [unit: $\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$ and $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$
mass individual particule mass $m_0$ (cf. Eq. (1)) [unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$]
mu_zero Relativistic chemical potential at zero pressure [unit: $m_B c^2$, with $m_B = 1.66\ 10^{-27} \ {\rm kg}$]. (standard value: 1)

Definition at line 149 of file eos_poly.C.

References set_auxiliary().

Lorene::Eos_poly::Eos_poly ( const Eos_poly eosi  ) 

Copy constructor.

Definition at line 159 of file eos_poly.C.

References set_auxiliary().

Lorene::Eos_poly::Eos_poly ( FILE *  fich  )  [protected]

Constructor from a binary file (created by the function sauve(FILE*) ).

This constructor is protected because any EOS construction from a binary file must be done via the function Eos::eos_from_file(FILE*) .

Definition at line 170 of file eos_poly.C.

References Lorene::fread_be(), gam, kap, m_0, mu_0, and set_auxiliary().

Lorene::Eos_poly::Eos_poly ( ifstream &  fich  )  [protected]

Constructor from a formatted file.

This constructor is protected because any EOS construction from a formatted file must be done via the function Eos::eos_from_file(ifstream&) .

Definition at line 193 of file eos_poly.C.

References gam, kap, m_0, mu_0, and set_auxiliary().

Lorene::Eos_poly::~Eos_poly (  )  [virtual]

Destructor.

Definition at line 218 of file eos_poly.C.


Member Function Documentation

void Lorene::Eos::calcule ( const Scalar thermo,
int  nzet,
int  l_min,
double(Eos::*)(double, const Param *) const   fait,
Param par,
Scalar resu 
) const [protected, inherited]

General computational method for Scalar 's.

Parameters:
thermo [input] thermodynamical quantity (for instance the enthalpy field)from which the thermodynamical quantity resu is to be computed.
nzet [input] number of domains where resu is to be computed.
l_min [input] index of the innermost domain is which resu is to be computed [default value: 0]; resu is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
fait [input] pointer on the member function of class Eos which performs the pointwise calculation.
par possible extra parameters of the EOS
resu [output] result of the computation.

Definition at line 282 of file eos.C.

References Lorene::Param::add_int_mod(), Lorene::Scalar::annule(), Lorene::Valeur::c, Lorene::Valeur::coef_i(), Lorene::Tbl::get_etat(), Lorene::Scalar::get_etat(), Lorene::Tensor::get_mp(), Lorene::Mg3d::get_nzone(), Lorene::Scalar::get_spectral_va(), Lorene::Tbl::get_taille(), Lorene::Valeur::set_etat_c_qcq(), Lorene::Tbl::set_etat_qcq(), Lorene::Mtbl::set_etat_qcq(), Lorene::Scalar::set_etat_qcq(), Lorene::Tbl::set_etat_zero(), Lorene::Scalar::set_etat_zero(), Lorene::Scalar::set_spectral_va(), Lorene::Tbl::t, and Lorene::Mtbl::t.

void Lorene::Eos::calcule ( const Cmp thermo,
int  nzet,
int  l_min,
double(Eos::*)(double, const Param *) const   fait,
Param par,
Cmp resu 
) const [protected, inherited]

General computational method for Cmp 's.

Parameters:
thermo [input] thermodynamical quantity (for instance the enthalpy field)from which the thermodynamical quantity resu is to be computed.
nzet [input] number of domains where resu is to be computed.
l_min [input] index of the innermost domain is which resu is to be computed [default value: 0]; resu is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
fait [input] pointer on the member function of class Eos which performs the pointwise calculation.
par possible extra parameters of the EOS
resu [output] result of the computation.

Definition at line 210 of file eos.C.

References Lorene::Param::add_int_mod(), Lorene::Cmp::annule(), Lorene::Valeur::c, Lorene::Valeur::coef_i(), Lorene::Tbl::get_etat(), Lorene::Cmp::get_etat(), Lorene::Cmp::get_mp(), Lorene::Mg3d::get_nzone(), Lorene::Tbl::get_taille(), Lorene::Valeur::set_etat_c_qcq(), Lorene::Tbl::set_etat_qcq(), Lorene::Mtbl::set_etat_qcq(), Lorene::Cmp::set_etat_qcq(), Lorene::Tbl::set_etat_zero(), Lorene::Cmp::set_etat_zero(), Lorene::Tbl::t, Lorene::Mtbl::t, and Lorene::Cmp::va.

Scalar Lorene::Eos::der_ener_ent ( const Scalar ent,
int  nzet,
int  l_min = 0,
Param par = 0x0 
) const [inherited]

Computes the logarithmic derivative $d\ln e/d\ln H$ from the log-enthalpy and extra parameters.

Parameters:
ent [input, unit: $c^2$] log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass
nzet number of domains where the derivative dln(e)/dln(H) is to be computed.
l_min index of the innermost domain is which the coefficient dln(n)/dln(H) is to be computed [default value: 0]; the derivative dln(e)/dln(H) is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
par possible extra parameters of the EOS
Returns:
dln(e)/dln(H)

Definition at line 461 of file eos.C.

References Lorene::Eos::calcule(), Lorene::Eos::der_ener_ent_p(), and Lorene::Tensor::get_mp().

Cmp Lorene::Eos::der_ener_ent ( const Cmp ent,
int  nzet,
int  l_min = 0,
Param par = 0x0 
) const [inherited]

Computes the logarithmic derivative $d\ln e/d\ln H$ from the log-enthalpy and extra parameters.

Parameters:
ent [input, unit: $c^2$] log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass
nzet number of domains where the derivative dln(e)/dln(H) is to be computed.
l_min index of the innermost domain is which the coefficient dln(n)/dln(H) is to be computed [default value: 0]; the derivative dln(e)/dln(H) is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
par possible extra parameters of the EOS
Returns:
dln(e)/dln(H)

Definition at line 451 of file eos.C.

References Lorene::Eos::calcule(), Lorene::Eos::der_ener_ent_p(), and Lorene::Cmp::get_mp().

double Lorene::Eos_poly::der_ener_ent_p ( double  ent,
const Param par = 0x0 
) const [virtual]

Computes the logarithmic derivative $d\ln e/d\ln H$ from the log-enthalpy.

Parameters:
ent [input, unit: $c^2$] log-enthalpy H defined by Eq. (4)
par possible extra parameters of the EOS
Returns:
dln(e)/dln(H)

Implements Lorene::Eos.

Reimplemented in Lorene::Eos_poly_newt.

Definition at line 441 of file eos_poly.C.

References ent_0, Lorene::exp(), gam, gam1, gam1sgamkap, kap, mu_0, Lorene::pow(), rel_mu_0, and unsgam1.

Scalar Lorene::Eos::der_nbar_ent ( const Scalar ent,
int  nzet,
int  l_min = 0,
Param par = 0x0 
) const [inherited]

Computes the logarithmic derivative $d\ln n/d\ln H$ from the log-enthalpy and extra parameters.

Parameters:
ent [input, unit: $c^2$] log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass
nzet number of domains where the derivative dln(n)/dln(H) is to be computed.
l_min index of the innermost domain is which the coefficient dln(n)/dln(H) is to be computed [default value: 0]; the derivative dln(n)/dln(H) is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
par possible extra parameters of the EOS
Returns:
dln(n)/dln(H)

Definition at line 438 of file eos.C.

References Lorene::Eos::calcule(), Lorene::Eos::der_nbar_ent_p(), and Lorene::Tensor::get_mp().

Cmp Lorene::Eos::der_nbar_ent ( const Cmp ent,
int  nzet,
int  l_min = 0,
Param par = 0x0 
) const [inherited]

Computes the logarithmic derivative $d\ln n/d\ln H$ from the log-enthalpy and extra parameters.

Parameters:
ent [input, unit: $c^2$] log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass
nzet number of domains where the derivative dln(n)/dln(H) is to be computed.
l_min index of the innermost domain is which the coefficient dln(n)/dln(H) is to be computed [default value: 0]; the derivative dln(n)/dln(H) is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
par possible extra parameters of the EOS
Returns:
dln(n)/dln(H)

Definition at line 428 of file eos.C.

References Lorene::Eos::calcule(), Lorene::Eos::der_nbar_ent_p(), and Lorene::Cmp::get_mp().

double Lorene::Eos_poly::der_nbar_ent_p ( double  ent,
const Param par = 0x0 
) const [virtual]

Computes the logarithmic derivative $d\ln n/d\ln H$ from the log-enthalpy.

Parameters:
ent [input, unit: $c^2$] log-enthalpy H defined by Eq. (4)
par possible extra parameters of the EOS
Returns:
dln(n)/dln(H)

Implements Lorene::Eos.

Reimplemented in Lorene::Eos_poly_newt.

Definition at line 421 of file eos_poly.C.

References ent_0, Lorene::exp(), gam1, and rel_mu_0.

Scalar Lorene::Eos::der_press_ent ( const Scalar ent,
int  nzet,
int  l_min = 0,
Param par = 0x0 
) const [inherited]

Computes the logarithmic derivative $d\ln p/d\ln H$ from the log-enthalpy and extra parameters.

Parameters:
ent [input, unit: $c^2$] log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass
nzet number of domains where the derivative dln(p)/dln(H) is to be computed.
par possible extra parameters of the EOS
l_min index of the innermost domain is which the coefficient dln(n)/dln(H) is to be computed [default value: 0]; the derivative dln(p)/dln(H) is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
Returns:
dln(p)/dln(H)

Definition at line 483 of file eos.C.

References Lorene::Eos::calcule(), Lorene::Eos::der_press_ent_p(), and Lorene::Tensor::get_mp().

Cmp Lorene::Eos::der_press_ent ( const Cmp ent,
int  nzet,
int  l_min = 0,
Param par = 0x0 
) const [inherited]

Computes the logarithmic derivative $d\ln p/d\ln H$ from the log-enthalpy and extra parameters.

Parameters:
ent [input, unit: $c^2$] log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass
nzet number of domains where the derivative dln(p)/dln(H) is to be computed.
par possible extra parameters of the EOS
l_min index of the innermost domain is which the coefficient dln(n)/dln(H) is to be computed [default value: 0]; the derivative dln(p)/dln(H) is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
Returns:
dln(p)/dln(H)

Definition at line 473 of file eos.C.

References Lorene::Eos::calcule(), Lorene::Eos::der_press_ent_p(), and Lorene::Cmp::get_mp().

double Lorene::Eos_poly::der_press_ent_p ( double  ent,
const Param par = 0x0 
) const [virtual]

Computes the logarithmic derivative $d\ln p/d\ln H$ from the log-enthalpy.

Parameters:
ent [input, unit: $c^2$] log-enthalpy H defined by Eq. (4)
par possible extra parameters of the EOS
Returns:
dln(p)/dln(H)

Implements Lorene::Eos.

Reimplemented in Lorene::Eos_poly_newt.

Definition at line 472 of file eos_poly.C.

References ent_0, Lorene::exp(), gam, gam1, and rel_mu_0.

Scalar Lorene::Eos::ener_ent ( const Scalar ent,
int  nzet,
int  l_min = 0,
Param par = 0x0 
) const [inherited]

Computes the total energy density from the log-enthalpy and extra parameters.

Parameters:
ent [input, unit: $c^2$] log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass
nzet number of domains where the energy density is to be computed.
l_min index of the innermost domain is which the energy density is to be computed [default value: 0]; the energy density is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
par possible extra parameters of the EOS
Returns:
energy density [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Definition at line 394 of file eos.C.

References Lorene::Eos::calcule(), Lorene::Eos::ener_ent_p(), and Lorene::Tensor::get_mp().

Cmp Lorene::Eos::ener_ent ( const Cmp ent,
int  nzet,
int  l_min = 0,
Param par = 0x0 
) const [inherited]

Computes the total energy density from the log-enthalpy and extra parameters.

Parameters:
ent [input, unit: $c^2$] log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass
nzet number of domains where the energy density is to be computed.
l_min index of the innermost domain is which the energy density is to be computed [default value: 0]; the energy density is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
par possible extra parameters of the EOS
Returns:
energy density [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Definition at line 384 of file eos.C.

References Lorene::Eos::calcule(), Lorene::Eos::ener_ent_p(), and Lorene::Cmp::get_mp().

double Lorene::Eos_poly::ener_ent_p ( double  ent,
const Param par = 0x0 
) const [virtual]

Computes the total energy density from the log-enthalpy.

Parameters:
ent [input, unit: $c^2$] log-enthalpy H defined by Eq. (4)
par possible extra parameters of the EOS
Returns:
energy density e [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Implements Lorene::Eos.

Reimplemented in Lorene::Eos_poly_newt.

Definition at line 385 of file eos_poly.C.

References ent_0, Lorene::exp(), gam, gam1sgamkap, kap, mu_0, Lorene::pow(), rel_mu_0, and unsgam1.

Eos * Lorene::Eos::eos_from_file ( ifstream &  fich  )  [static, inherited]

Construction of an EOS from a formatted file.

The fist line of the file must start by the EOS number, according to the following conventions:

  • 1 = relativistic polytropic EOS (class Eos_poly ).
  • 2 = Newtonian polytropic EOS (class Eos_poly_newt ).
  • 3 = Relativistic incompressible EOS (class Eos_incomp ).
  • 4 = Newtonian incompressible EOS (class Eos_incomp_newt ).
  • 5 = Strange matter (MIT Bag model)
  • 6 = Strange matter (MIT Bag model) with crust
  • 10 = SLy4 (Douchin & Haensel 2001)
  • 11 = FPS (Friedman-Pandharipande + Skyrme)
  • 12 = BPAL12 (Bombaci et al. 1995)
  • 13 = AkmalPR (Akmal, Pandharipande & Ravenhall 1998)
  • 14 = BBB2 (Baldo, Bombaci & Burgio 1997)
  • 15 = BalbN1H1 (Balberg 2000)
  • 16 = GlendNH3 (Glendenning 1985, case 3)
  • 17 = Compstar (Tabulated EOS for 2010 CompStar school)
  • 18 = magnetized (tabulated) equation of state
  • 19 = relativistic ideal Fermi gas at zero temperature (class Eos_Fermi)
  • 100 = Multi-domain EOS (class MEos )
  • 110 = Multi-polytropic EOS (class Eos_multi_poly )
  • 120 = Fitted SLy4 (Shibata 2004)
  • 121 = Fitted FPS (Shibata 2004)
  • 122 = Fitted AkmalPR (Taniguchi 2005)

The second line in the file should contain a name given by the user to the EOS. The following lines should contain the EOS parameters (one parameter per line), in the same order than in the class declaration.

Definition at line 317 of file eos_from_file.C.

Eos * Lorene::Eos::eos_from_file ( FILE *  fich  )  [static, inherited]

Construction of an EOS from a binary file.

The file must have been created by the function sauve(FILE*) .

Definition at line 180 of file eos_from_file.C.

References Lorene::fread_be().

double Lorene::Eos_poly::get_gam (  )  const

Returns the adiabatic index $\gamma$ (cf. Eq. (3)).

Definition at line 259 of file eos_poly.C.

References gam.

double Lorene::Eos_poly::get_kap (  )  const

Returns the pressure coefficient $\kappa$ (cf.

Eq. (3)) [unit: $\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$ and $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$.

Definition at line 263 of file eos_poly.C.

References kap.

double Lorene::Eos_poly::get_m_0 (  )  const

Return the individual particule mass $m_0$ (cf.

Eq. (1)) [unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$].

Definition at line 267 of file eos_poly.C.

References m_0.

double Lorene::Eos_poly::get_mu_0 (  )  const

Return the relativistic chemical potential at zero pressure [unit: $m_B c^2$, with $m_B = 1.66\ 10^{-27} \ {\rm kg}$].

Definition at line 271 of file eos_poly.C.

References mu_0.

const char * Lorene::Eos::get_name (  )  const [inherited]

Returns the EOS name.

Definition at line 176 of file eos.C.

References Lorene::Eos::name.

int Lorene::Eos_poly::identify (  )  const [virtual]

Returns a number to identify the sub-classe of Eos the object belongs to.

Implements Lorene::Eos.

Reimplemented in Lorene::Eos_poly_newt.

Definition at line 132 of file eos_from_file.C.

Scalar Lorene::Eos::nbar_ent ( const Scalar ent,
int  nzet,
int  l_min = 0,
Param par = 0x0 
) const [inherited]

Computes the baryon density field from the log-enthalpy field and extra parameters.

Parameters:
ent [input, unit: $c^2$] log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass
nzet number of domains where the baryon density is to be computed.
l_min index of the innermost domain is which the baryon density is to be computed [default value: 0]; the baryon density is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
par possible extra parameters of the EOS
Returns:
baryon density [unit: $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$]

Definition at line 369 of file eos.C.

References Lorene::Eos::calcule(), Lorene::Tensor::get_mp(), and Lorene::Eos::nbar_ent_p().

Cmp Lorene::Eos::nbar_ent ( const Cmp ent,
int  nzet,
int  l_min = 0,
Param par = 0x0 
) const [inherited]

Computes the baryon density field from the log-enthalpy field and extra parameters.

Parameters:
ent [input, unit: $c^2$] log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass
nzet number of domains where the baryon density is to be computed.
l_min index of the innermost domain is which the baryon density is to be computed [default value: 0]; the baryon density is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
par possible extra parameters of the EOS
Returns:
baryon density [unit: $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$]

Definition at line 359 of file eos.C.

References Lorene::Eos::calcule(), Lorene::Cmp::get_mp(), and Lorene::Eos::nbar_ent_p().

double Lorene::Eos_poly::nbar_ent_p ( double  ent,
const Param par = 0x0 
) const [virtual]

Computes the baryon density from the log-enthalpy.

Parameters:
ent [input, unit: $c^2$] log-enthalpy H defined by Eq. (4)
par possible extra parameters of the EOS
Returns:
baryon density n [unit: $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$]

Implements Lorene::Eos.

Reimplemented in Lorene::Eos_poly_newt.

Definition at line 371 of file eos_poly.C.

References ent_0, Lorene::exp(), gam1sgamkap, Lorene::pow(), rel_mu_0, and unsgam1.

virtual bool Lorene::Eos::operator!= ( const Eos  )  const [pure virtual, inherited]

Comparison operator (difference).

bool Lorene::Eos_poly::operator!= ( const Eos eos_i  )  const [virtual]

Comparison operator (difference).

Reimplemented in Lorene::Eos_poly_newt.

Definition at line 327 of file eos_poly.C.

References operator==().

void Lorene::Eos_poly::operator= ( const Eos_poly eosi  ) 

Assignment to another Eos_poly.

Reimplemented in Lorene::Eos_poly_newt.

Definition at line 227 of file eos_poly.C.

References gam, kap, m_0, mu_0, Lorene::Eos::name, set_auxiliary(), and Lorene::Eos::set_name().

virtual bool Lorene::Eos::operator== ( const Eos  )  const [pure virtual, inherited]

Comparison operator (egality).

bool Lorene::Eos_poly::operator== ( const Eos eos_i  )  const [virtual]

Comparison operator (egality).

Reimplemented in Lorene::Eos_poly_newt.

Definition at line 281 of file eos_poly.C.

References gam, identify(), Lorene::Eos::identify(), kap, m_0, and mu_0.

ostream & Lorene::Eos_poly::operator>> ( ostream &  ost  )  const [protected, virtual]

Operator >>.

Implements Lorene::Eos.

Reimplemented in Lorene::Eos_poly_newt.

Definition at line 350 of file eos_poly.C.

References gam, kap, m_0, and mu_0.

Scalar Lorene::Eos::press_ent ( const Scalar ent,
int  nzet,
int  l_min = 0,
Param par = 0x0 
) const [inherited]

Computes the pressure from the log-enthalpy and extra parameters.

Parameters:
ent [input, unit: $c^2$] log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass
nzet number of domains where the pressure is to be computed.
l_min index of the innermost domain is which the pressure is to be computed [default value: 0]; the pressure is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
par possible extra parameters of the EOS
Returns:
pressure [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Definition at line 416 of file eos.C.

References Lorene::Eos::calcule(), Lorene::Tensor::get_mp(), and Lorene::Eos::press_ent_p().

Cmp Lorene::Eos::press_ent ( const Cmp ent,
int  nzet,
int  l_min = 0,
Param par = 0x0 
) const [inherited]

Computes the pressure from the log-enthalpy and extra parameters.

Parameters:
ent [input, unit: $c^2$] log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass
nzet number of domains where the pressure is to be computed.
l_min index of the innermost domain is which the pressure is to be computed [default value: 0]; the pressure is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
par possible extra parameters of the EOS
Returns:
pressure [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Definition at line 406 of file eos.C.

References Lorene::Eos::calcule(), Lorene::Cmp::get_mp(), and Lorene::Eos::press_ent_p().

double Lorene::Eos_poly::press_ent_p ( double  ent,
const Param par = 0x0 
) const [virtual]

Computes the pressure from the log-enthalpy.

Parameters:
ent [input, unit: $c^2$] log-enthalpy H defined by Eq. (4)
par possible extra parameters of the EOS
Returns:
pressure p [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Implements Lorene::Eos.

Reimplemented in Lorene::Eos_poly_newt.

Definition at line 403 of file eos_poly.C.

References ent_0, Lorene::exp(), gam, gam1sgamkap, kap, Lorene::pow(), rel_mu_0, and unsgam1.

void Lorene::Eos_poly::sauve ( FILE *  fich  )  const [virtual]

Save in a file.

Reimplemented from Lorene::Eos.

Reimplemented in Lorene::Eos_poly_newt.

Definition at line 338 of file eos_poly.C.

References Lorene::fwrite_be(), gam, kap, m_0, and mu_0.

void Lorene::Eos_poly::set_auxiliary (  )  [protected]

Computes the auxiliary quantities gam1 , unsgam1 , gam1sgamkap from the values of gam and kap.

Definition at line 245 of file eos_poly.C.

References ent_0, gam, gam1, gam1sgamkap, kap, Lorene::log(), m_0, mu_0, rel_mu_0, and unsgam1.

void Lorene::Eos::set_name ( const char *  name_i  )  [inherited]

Sets the EOS name.

Definition at line 170 of file eos.C.

References Lorene::Eos::name.


Friends And Related Function Documentation

Eos* Eos::eos_from_file ( FILE *   )  [friend]

The construction functions from a file.

Reimplemented in Lorene::Eos_poly_newt.

ostream& operator<< ( ostream &  ,
const Eos  
) [friend, inherited]

Display.


Member Data Documentation

double Lorene::Eos_poly::ent_0 [protected]

Enthalpy at zero pressure ($\ln (\mu_0/m_0)$).

Definition at line 795 of file eos.h.

double Lorene::Eos_poly::gam [protected]

Adiabatic index $\gamma$ (cf. Eq. (3)).

Definition at line 769 of file eos.h.

double Lorene::Eos_poly::gam1 [protected]

$\gamma-1$

Definition at line 791 of file eos.h.

double Lorene::Eos_poly::gam1sgamkap [protected]

$(\gamma-1) / (\gamma \kappa) m_0$

Definition at line 793 of file eos.h.

double Lorene::Eos_poly::kap [protected]

Pressure coefficient $\kappa$ (cf.

Eq. (3)) [unit: $\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$ and $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$.

Definition at line 776 of file eos.h.

double Lorene::Eos_poly::m_0 [protected]

Individual particule mass $m_0$ (cf.

Eq. (1)) [unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$].

Definition at line 781 of file eos.h.

double Lorene::Eos_poly::mu_0 [protected]

Relativistic chemical potential at zero pressure [unit: $m_B c^2$, with $m_B = 1.66\ 10^{-27} \ {\rm kg}$].

(standard value: 1)

Definition at line 787 of file eos.h.

char Lorene::Eos::name[100] [protected, inherited]

EOS name.

Definition at line 199 of file eos.h.

double Lorene::Eos_poly::rel_mu_0 [protected]

$\mu_0/m_0$

Definition at line 794 of file eos.h.

double Lorene::Eos_poly::unsgam1 [protected]

$1/(\gamma-1)$

Definition at line 792 of file eos.h.


The documentation for this class was generated from the following files:

Generated on 7 Dec 2019 for LORENE by  doxygen 1.6.1