LORENE
binaire_orbite.C
1  /*
2  * Method of class Binaire to compute the orbital angular velocity {\tt omega}
3  * and the position of the rotation axis {\tt x_axe}.
4  *
5  * (See file binaire.h for documentation)
6  *
7  */
8 
9 /*
10  * Copyright (c) 2000-2003 Eric Gourgoulhon
11  * Copyright (c) 2000-2001 Keisuke Taniguchi
12  *
13  * This file is part of LORENE.
14  *
15  * LORENE is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  *
20  * LORENE is distributed in the hope that it will be useful,
21  * but WITHOUT ANY WARRANTY; without even the implied warranty of
22  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23  * GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with LORENE; if not, write to the Free Software
27  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28  *
29  */
30 
31 
32 
33 
34 /*
35  * $Id: binaire_orbite.C,v 1.9 2016/12/05 16:17:47 j_novak Exp $
36  * $Log: binaire_orbite.C,v $
37  * Revision 1.9 2016/12/05 16:17:47 j_novak
38  * Suppression of some global variables (file names, loch, ...) to prevent redefinitions
39  *
40  * Revision 1.8 2014/10/24 11:27:49 j_novak
41  * Minor change in the setting of parameters for zero_list, to avoid problems with g++-4.8. To be further explored...
42  *
43  * Revision 1.7 2014/10/13 08:52:44 j_novak
44  * Lorene classes and functions now belong to the namespace Lorene.
45  *
46  * Revision 1.6 2014/10/06 15:12:59 j_novak
47  * Modified #include directives to use c++ syntax.
48  *
49  * Revision 1.5 2011/03/27 16:42:21 e_gourgoulhon
50  * Added output via new function save_profile for graphics.
51  *
52  * Revision 1.4 2009/06/18 18:40:57 k_taniguchi
53  * Added a slightly modified code to determine
54  * the orbital angular velocity.
55  *
56  * Revision 1.3 2004/03/25 10:28:59 j_novak
57  * All LORENE's units are now defined in the namespace Unites (in file unites.h).
58  *
59  * Revision 1.2 2003/09/16 13:41:27 e_gourgoulhon
60  * Search of sub-intervals containing the zero(s) via zero_list
61  * Selection of the sub-interval as the closest one to previous value of omega.
62  * Replaced zerosec by zerosec_b.
63  *
64  * Revision 1.1.1.1 2001/11/20 15:19:30 e_gourgoulhon
65  * LORENE
66  *
67  * Revision 2.9 2001/08/14 12:36:45 keisuke
68  * Change of the minimum and maximum values for searching a new position
69  * of the rotation axis.
70  *
71  * Revision 2.8 2001/03/20 16:06:55 keisuke
72  * Addition of the method directly to calculate
73  * the orbital angular velocity (we do not use this method!).
74  *
75  * Revision 2.7 2001/03/19 17:10:28 keisuke
76  * Change of the definition of the canter of mass.
77  *
78  * Revision 2.6 2001/03/19 13:37:04 keisuke
79  * Set x_axe to be zero for the case of identical stars.
80  *
81  * Revision 2.5 2001/03/17 16:17:20 keisuke
82  * Input a subroutine to determine the position of the rotation axis
83  * in the case of binary systems composed of different stars.
84  *
85  * Revision 2.4 2000/10/02 08:29:34 keisuke
86  * Change the method to construct d_logn_auto in the calculation of dnulg[i].
87  *
88  * Revision 2.3 2000/09/22 15:56:32 keisuke
89  * *** empty log message ***
90  *
91  * Revision 2.2 2000/09/22 15:52:12 keisuke
92  * Changement calcul de dlogn (prise en compte d'une partie divergente
93  * dans logn_auto par l'appel a d_logn_auto).
94  *
95  * Revision 2.1 2000/02/12 18:36:09 eric
96  * *** empty log message ***
97  *
98  * Revision 2.0 2000/02/12 17:09:21 eric
99  * *** empty log message ***
100  *
101  *
102  * $Header: /cvsroot/Lorene/C++/Source/Binaire/binaire_orbite.C,v 1.9 2016/12/05 16:17:47 j_novak Exp $
103  *
104  */
105 
106 // Headers C
107 #include <cmath>
108 
109 // Headers Lorene
110 #include "binaire.h"
111 #include "eos.h"
112 #include "param.h"
113 #include "utilitaires.h"
114 #include "unites.h"
115 
116 #include "scalar.h"
117 #include "graphique.h"
118 
119 namespace Lorene {
120 double fonc_binaire_axe(double , const Param& ) ;
121 double fonc_binaire_orbit(double , const Param& ) ;
122 
123 //******************************************************************************
124 
125 void Binaire::orbit(double fact_omeg_min, double fact_omeg_max, double& xgg1,
126  double& xgg2) {
127 
128  using namespace Unites ;
129 
130  //-------------------------------------------------------------
131  // Evaluation of various quantities at the center of each star
132  //-------------------------------------------------------------
133 
134  double dnulg[2], asn2[2], dasn2[2], ny[2], dny[2], npn[2], dnpn[2], xgg[2] ;
135  double nyso[2], dnyso[2], npnso2[2], dnpnso2[2], ori_x[2] ;
136 
137  for (int i=0; i<2; i++) {
138 
139  const Map& mp = et[i]->get_mp() ;
140 
141  const Cmp& logn_auto_regu = et[i]->get_logn_auto_regu()() ;
142  const Cmp& logn_comp = et[i]->get_logn_comp()() ;
143  const Cmp& loggam = et[i]->get_loggam()() ;
144  const Cmp& nnn = et[i]->get_nnn()() ;
145  const Cmp& a_car = et[i]->get_a_car()() ;
146  const Tenseur& shift = et[i]->get_shift() ;
147  const Tenseur& d_logn_auto_div = et[i]->get_d_logn_auto_div() ;
148 
149  Tenseur dln_auto_div = d_logn_auto_div ;
150 
151  if ( *(dln_auto_div.get_triad()) != ref_triad ) {
152 
153  // Change the basis from spherical coordinate to Cartesian one
154  dln_auto_div.change_triad( mp.get_bvect_cart() ) ;
155 
156  // Change the basis from mapping coordinate to absolute one
157  dln_auto_div.change_triad( ref_triad ) ;
158 
159  }
160 
161  //----------------------------------
162  // Calcul de d/dX( nu + ln(Gamma) ) au centre de l'etoile ---> dnulg[i]
163  //----------------------------------
164 
165  // Facteur de passage x --> X :
166  double factx ;
167  if (fabs(mp.get_rot_phi()) < 1.e-14) {
168  factx = 1. ;
169  }
170  else {
171  if (fabs(mp.get_rot_phi() - M_PI) < 1.e-14) {
172  factx = - 1. ;
173  }
174  else {
175  cout << "Binaire::orbit : unknown value of rot_phi !" << endl ;
176  abort() ;
177  }
178  }
179 
180  Cmp tmp = logn_auto_regu + logn_comp + loggam ;
181 
182  // ... gradient suivant X :
183  dnulg[i] = dln_auto_div(0)(0, 0, 0, 0)
184  + factx * tmp.dsdx()(0, 0, 0, 0) ;
185 
186  tmp = logn_auto_regu + logn_comp ;
187  cout << "dlnndx_div_c : " << dln_auto_div(0)(0, 0, 0, 0) << endl ;
188  cout << "dlnndx_c : " << dln_auto_div(0)(0, 0, 0, 0) + factx*tmp.dsdx()(0, 0, 0, 0) << endl ;
189 
190  cout << "dloggamdx_c : " << factx*loggam.dsdx()(0, 0, 0, 0) << endl ;
191  Scalar stmp(logn_comp) ;
192  save_profile(stmp, 0., 10., 0.5*M_PI, 0., "prof_logn.d") ;
193  stmp = loggam ;
194  save_profile(stmp, 0., 1.8, 0.5*M_PI, 0., "prof_loggam.d") ;
195 
196  //----------------------------------
197  // Calcul de A^2/N^2 au centre de l'etoile ---> asn2[i]
198  //----------------------------------
199 
200  double nc = nnn(0, 0, 0, 0) ;
201  double a2c = a_car(0, 0, 0, 0) ;
202  asn2[i] = a2c / (nc * nc) ;
203 
204  if ( et[i]->is_relativistic() ) {
205 
206  //----------------------------------
207  // Calcul de d/dX(A^2/N^2) au centre de l'etoile ---> dasn2[i]
208  //----------------------------------
209 
210  double da2c = factx * a_car.dsdx()(0, 0, 0, 0) ;
211  double dnc = factx * nnn.dsdx()(0, 0, 0, 0) ;
212 
213  dasn2[i] = ( da2c - 2 * a2c / nc * dnc ) / (nc*nc) ;
214 
215  //----------------------------------
216  // Calcul de N^Y au centre de l'etoile ---> ny[i]
217  //----------------------------------
218 
219  ny[i] = shift(1)(0, 0, 0, 0) ;
220  nyso[i] = ny[i] / omega ;
221 
222  //----------------------------------
223  // Calcul de dN^Y/dX au centre de l'etoile ---> dny[i]
224  //----------------------------------
225 
226  dny[i] = factx * shift(1).dsdx()(0, 0, 0, 0) ;
227  dnyso[i] = dny[i] / omega ;
228 
229  //----------------------------------
230  // Calcul de (N^X)^2 + (N^Y)^2 + (N^Z)^2
231  // au centre de l'etoile ---> npn[i]
232  //----------------------------------
233 
234  tmp = flat_scalar_prod(shift, shift)() ;
235 
236  npn[i] = tmp(0, 0, 0, 0) ;
237  npnso2[i] = npn[i] / omega / omega ;
238 
239  //----------------------------------
240  // Calcul de d/dX( (N^X)^2 + (N^Y)^2 + (N^Z)^2 )
241  // au centre de l'etoile ---> dnpn[i]
242  //----------------------------------
243 
244  dnpn[i] = factx * tmp.dsdx()(0, 0, 0, 0) ;
245  dnpnso2[i] = dnpn[i] / omega / omega ;
246 
247  } // fin du cas relativiste
248  else {
249  dasn2[i] = 0 ;
250  ny[i] = 0 ;
251  nyso[i] = 0 ;
252  dny[i] = 0 ;
253  dnyso[i] = 0 ;
254  npn[i] = 0 ;
255  npnso2[i] = 0 ;
256  dnpn[i] = 0 ;
257  dnpnso2[i] = 0 ;
258  }
259 
260  cout << "Binaire::orbit: central d(nu+log(Gam))/dX : "
261  << dnulg[i] << endl ;
262  cout << "Binaire::orbit: central A^2/N^2 : " << asn2[i] << endl ;
263  cout << "Binaire::orbit: central d(A^2/N^2)/dX : " << dasn2[i] << endl ;
264  cout << "Binaire::orbit: central N^Y : " << ny[i] << endl ;
265  cout << "Binaire::orbit: central dN^Y/dX : " << dny[i] << endl ;
266  cout << "Binaire::orbit: central N.N : " << npn[i] << endl ;
267  cout << "Binaire::orbit: central d(N.N)/dX : " << dnpn[i] << endl ;
268 
269  //----------------------
270  // Pour information seulement : 1/ calcul des positions des "centres de
271  // de masse"
272  // 2/ calcul de dH/dX en r=0
273  //-----------------------
274 
275  ori_x[i] = (et[i]->get_mp()).get_ori_x() ;
276 
277  xgg[i] = factx * (et[i]->xa_barycenter() - ori_x[i]) ;
278 
279  } // fin de la boucle sur les etoiles
280 
281  xgg1 = xgg[0] ;
282  xgg2 = xgg[1] ;
283 
284 //---------------------------------
285 // Position de l'axe de rotation
286 //---------------------------------
287 
288  int relat = ( et[0]->is_relativistic() ) ? 1 : 0 ;
289  double ori_x1 = ori_x[0] ;
290  double ori_x2 = ori_x[1] ;
291 
292  if ( et[0]->get_eos() == et[1]->get_eos() &&
293  et[0]->get_ent()()(0,0,0,0) == et[1]->get_ent()()(0,0,0,0) ) {
294 
295  x_axe = 0. ;
296 
297  }
298  else {
299 
300  Param paraxe ;
301  paraxe.add_int(relat) ;
302  paraxe.add_double( ori_x1, 0) ;
303  paraxe.add_double( ori_x2, 1) ;
304  paraxe.add_double( dnulg[0], 2) ;
305  paraxe.add_double( dnulg[1], 3) ;
306  paraxe.add_double( asn2[0], 4) ;
307  paraxe.add_double( asn2[1], 5) ;
308  paraxe.add_double( dasn2[0], 6) ;
309  paraxe.add_double( dasn2[1], 7) ;
310  paraxe.add_double( nyso[0], 8) ;
311  paraxe.add_double( nyso[1], 9) ;
312  paraxe.add_double( dnyso[0], 10) ;
313  paraxe.add_double( dnyso[1], 11) ;
314  paraxe.add_double( npnso2[0], 12) ;
315  paraxe.add_double( npnso2[1], 13) ;
316  paraxe.add_double( dnpnso2[0], 14) ;
317  paraxe.add_double( dnpnso2[1], 15) ;
318 
319  int nitmax_axe = 200 ;
320  int nit_axe ;
321  double precis_axe = 1.e-13 ;
322 
323  x_axe = zerosec(fonc_binaire_axe, paraxe, 0.9*ori_x1, 0.9*ori_x2,
324  precis_axe, nitmax_axe, nit_axe) ;
325 
326  cout << "Binaire::orbit : Number of iterations in zerosec for x_axe : "
327  << nit_axe << endl ;
328  }
329 
330  cout << "Binaire::orbit : x_axe [km] : " << x_axe / km << endl ;
331 
332 //-------------------------------------
333 // Calcul de la vitesse orbitale
334 //-------------------------------------
335 
336  Param parf ;
337  parf.add_int(relat) ;
338  parf.add_double( ori_x1, 0) ;
339  parf.add_double( dnulg[0], 1) ;
340  parf.add_double( asn2[0], 2) ;
341  parf.add_double( dasn2[0], 3) ;
342  parf.add_double( ny[0], 4) ;
343  parf.add_double( dny[0], 5) ;
344  parf.add_double( npn[0], 6) ;
345  parf.add_double( dnpn[0], 7) ;
346  parf.add_double( x_axe, 8) ;
347 
348  double omega1 = fact_omeg_min * omega ;
349  double omega2 = fact_omeg_max * omega ;
350  cout << "Binaire::orbit: omega1, omega2 [rad/s] : "
351  << omega1 * f_unit << " " << omega2 * f_unit << endl ;
352 
353  // Search for the various zeros in the interval [omega1,omega2]
354  // ------------------------------------------------------------
355  int nsub = 50 ; // total number of subdivisions of the interval
356  Tbl* azer = 0x0 ;
357  Tbl* bzer = 0x0 ;
358  zero_list(fonc_binaire_orbit, parf, omega1, omega2, nsub,
359  azer, bzer) ;
360 
361  // Search for the zero closest to the previous value of omega
362  // ----------------------------------------------------------
363  double omeg_min, omeg_max ;
364  int nzer = azer->get_taille() ; // number of zeros found by zero_list
365  cout << "Binaire:orbit : " << nzer <<
366  " zero(s) found in the interval [omega1, omega2]." << endl ;
367  cout << "omega, omega1, omega2 : " << omega << " " << omega1
368  << " " << omega2 << endl ;
369  cout << "azer : " << *azer << endl ;
370  cout << "bzer : " << *bzer << endl ;
371 
372  if (nzer == 0) {
373  cout <<
374  "Binaire::orbit: WARNING : no zero detected in the interval"
375  << endl << " [" << omega1 * f_unit << ", "
376  << omega2 * f_unit << "] rad/s !" << endl ;
377  omeg_min = omega1 ;
378  omeg_max = omega2 ;
379  }
380  else {
381  double dist_min = fabs(omega2 - omega1) ;
382  int i_dist_min = -1 ;
383  for (int i=0; i<nzer; i++) {
384  // Distance of previous value of omega from the center of the
385  // interval [azer(i), bzer(i)]
386  double dist = fabs( omega - 0.5 * ( (*azer)(i) + (*bzer)(i) ) ) ;
387  if (dist < dist_min) {
388  dist_min = dist ;
389  i_dist_min = i ;
390  }
391  }
392  omeg_min = (*azer)(i_dist_min) ;
393  omeg_max = (*bzer)(i_dist_min) ;
394  }
395 
396  delete azer ; // Tbl allocated by zero_list
397  delete bzer ; //
398 
399  cout << "Binaire:orbit : interval selected for the search of the zero : "
400  << endl << " [" << omeg_min << ", " << omeg_max << "] = ["
401  << omeg_min * f_unit << ", " << omeg_max * f_unit << "] rad/s " << endl ;
402 
403  // Computation of the zero in the selected interval by the secant method
404  // ---------------------------------------------------------------------
405  int nitermax = 200 ;
406  int niter ;
407  double precis = 1.e-13 ;
408  omega = zerosec_b(fonc_binaire_orbit, parf, omeg_min, omeg_max,
409  precis, nitermax, niter) ;
410 
411  cout << "Binaire::orbit : Number of iterations in zerosec for omega : "
412  << niter << endl ;
413 
414  cout << "Binaire::orbit : omega [rad/s] : "
415  << omega * f_unit << endl ;
416 
417 
418  /* We do not use the method below.
419  // Direct calculation
420  //--------------------
421 
422  double om2_et1 ;
423  double om2_et2 ;
424 
425  double x_et1 = ori_x1 - x_axe ;
426  double x_et2 = ori_x2 - x_axe ;
427 
428  if (relat == 1) {
429 
430  double andan_et1 = 0.5 * dasn2[0] + asn2[0] * dnulg[0] ;
431  double andan_et2 = 0.5 * dasn2[1] + asn2[1] * dnulg[1] ;
432 
433  double bpb_et1 = x_et1 * x_et1 - 2. * nyso[0] * x_et1 + npnso2[0] ;
434  double bpb_et2 = x_et2 * x_et2 - 2. * nyso[1] * x_et2 + npnso2[1] ;
435 
436  double cpc_et1 = 0.5 * dnpnso2[0] + x_et1 * (1. - dnyso[0]) - nyso[0] ;
437  double cpc_et2 = 0.5 * dnpnso2[1] + x_et2 * (1. - dnyso[1]) - nyso[1] ;
438 
439  om2_et1 = dnulg[0] / (andan_et1 * bpb_et1 + asn2[0] * cpc_et1) ;
440  om2_et2 = dnulg[1] / (andan_et2 * bpb_et2 + asn2[1] * cpc_et2) ;
441 
442  }
443  else {
444 
445  om2_et1 = dnulg[0] / x_et1 ;
446  om2_et2 = dnulg[1] / x_et2 ;
447 
448  }
449 
450  double ome_et1 = sqrt( om2_et1 ) ;
451  double ome_et2 = sqrt( om2_et2 ) ;
452 
453  double diff_om1 = 1. - ome_et1 / ome_et2 ;
454  double diff_om2 = 1. - ome_et1 / omega ;
455 
456  cout << "Binaire::orbit : omega (direct) [rad/s] : "
457  << ome_et1 * f_unit << endl ;
458 
459  cout << "Binaire::orbit : relative difference between " << endl
460  << " omega_star1 and omega_star2 (direct) : " << diff_om1 << endl
461  << " omega (direct) and omega (iretation) : " << diff_om2 << endl ;
462  */
463 
464 }
465 
466 
467 void Binaire::orbit_eqmass(double fact_omeg_min, double fact_omeg_max,
468  double mass1, double mass2,
469  double& xgg1, double& xgg2) {
470 
471  using namespace Unites ;
472 
473  //-------------------------------------------------------------
474  // Evaluation of various quantities at the center of each star
475  //-------------------------------------------------------------
476 
477  double dnulg[2], asn2[2], dasn2[2], ny[2], dny[2], npn[2], dnpn[2], xgg[2] ;
478  double nyso[2], dnyso[2], npnso2[2], dnpnso2[2], ori_x[2] ;
479 
480  for (int i=0; i<2; i++) {
481 
482  const Map& mp = et[i]->get_mp() ;
483 
484  const Cmp& logn_auto_regu = et[i]->get_logn_auto_regu()() ;
485  const Cmp& logn_comp = et[i]->get_logn_comp()() ;
486  const Cmp& loggam = et[i]->get_loggam()() ;
487  const Cmp& nnn = et[i]->get_nnn()() ;
488  const Cmp& a_car = et[i]->get_a_car()() ;
489  const Tenseur& shift = et[i]->get_shift() ;
490  const Tenseur& d_logn_auto_div = et[i]->get_d_logn_auto_div() ;
491 
492  Tenseur dln_auto_div = d_logn_auto_div ;
493 
494  if ( *(dln_auto_div.get_triad()) != ref_triad ) {
495 
496  // Change the basis from spherical coordinate to Cartesian one
497  dln_auto_div.change_triad( mp.get_bvect_cart() ) ;
498 
499  // Change the basis from mapping coordinate to absolute one
500  dln_auto_div.change_triad( ref_triad ) ;
501 
502  }
503 
504  //----------------------------------
505  // Calcul de d/dX( nu + ln(Gamma) ) au centre de l'etoile ---> dnulg[i]
506  //----------------------------------
507 
508  // Facteur de passage x --> X :
509  double factx ;
510  if (fabs(mp.get_rot_phi()) < 1.e-14) {
511  factx = 1. ;
512  }
513  else {
514  if (fabs(mp.get_rot_phi() - M_PI) < 1.e-14) {
515  factx = - 1. ;
516  }
517  else {
518  cout << "Binaire::orbit : unknown value of rot_phi !" << endl ;
519  abort() ;
520  }
521  }
522 
523  Cmp tmp = logn_auto_regu + logn_comp + loggam ;
524 
525  // ... gradient suivant X :
526  dnulg[i] = dln_auto_div(0)(0, 0, 0, 0)
527  + factx * tmp.dsdx()(0, 0, 0, 0) ;
528 
529  //----------------------------------
530  // Calcul de A^2/N^2 au centre de l'etoile ---> asn2[i]
531  //----------------------------------
532 
533  double nc = nnn(0, 0, 0, 0) ;
534  double a2c = a_car(0, 0, 0, 0) ;
535  asn2[i] = a2c / (nc * nc) ;
536 
537  if ( et[i]->is_relativistic() ) {
538 
539  //----------------------------------
540  // Calcul de d/dX(A^2/N^2) au centre de l'etoile ---> dasn2[i]
541  //----------------------------------
542 
543  double da2c = factx * a_car.dsdx()(0, 0, 0, 0) ;
544  double dnc = factx * nnn.dsdx()(0, 0, 0, 0) ;
545 
546  dasn2[i] = ( da2c - 2 * a2c / nc * dnc ) / (nc*nc) ;
547 
548  //----------------------------------
549  // Calcul de N^Y au centre de l'etoile ---> ny[i]
550  //----------------------------------
551 
552  ny[i] = shift(1)(0, 0, 0, 0) ;
553  nyso[i] = ny[i] / omega ;
554 
555  //----------------------------------
556  // Calcul de dN^Y/dX au centre de l'etoile ---> dny[i]
557  //----------------------------------
558 
559  dny[i] = factx * shift(1).dsdx()(0, 0, 0, 0) ;
560  dnyso[i] = dny[i] / omega ;
561 
562  //----------------------------------
563  // Calcul de (N^X)^2 + (N^Y)^2 + (N^Z)^2
564  // au centre de l'etoile ---> npn[i]
565  //----------------------------------
566 
567  tmp = flat_scalar_prod(shift, shift)() ;
568 
569  npn[i] = tmp(0, 0, 0, 0) ;
570  npnso2[i] = npn[i] / omega / omega ;
571 
572  //----------------------------------
573  // Calcul de d/dX( (N^X)^2 + (N^Y)^2 + (N^Z)^2 )
574  // au centre de l'etoile ---> dnpn[i]
575  //----------------------------------
576 
577  dnpn[i] = factx * tmp.dsdx()(0, 0, 0, 0) ;
578  dnpnso2[i] = dnpn[i] / omega / omega ;
579 
580  } // fin du cas relativiste
581  else {
582  dasn2[i] = 0 ;
583  ny[i] = 0 ;
584  nyso[i] = 0 ;
585  dny[i] = 0 ;
586  dnyso[i] = 0 ;
587  npn[i] = 0 ;
588  npnso2[i] = 0 ;
589  dnpn[i] = 0 ;
590  dnpnso2[i] = 0 ;
591  }
592 
593  cout << "Binaire::orbit: central d(nu+log(Gam))/dX : "
594  << dnulg[i] << endl ;
595  cout << "Binaire::orbit: central A^2/N^2 : " << asn2[i] << endl ;
596  cout << "Binaire::orbit: central d(A^2/N^2)/dX : " << dasn2[i] << endl ;
597  cout << "Binaire::orbit: central N^Y : " << ny[i] << endl ;
598  cout << "Binaire::orbit: central dN^Y/dX : " << dny[i] << endl ;
599  cout << "Binaire::orbit: central N.N : " << npn[i] << endl ;
600  cout << "Binaire::orbit: central d(N.N)/dX : " << dnpn[i] << endl ;
601 
602  //----------------------
603  // Pour information seulement : 1/ calcul des positions des "centres de
604  // de masse"
605  // 2/ calcul de dH/dX en r=0
606  //-----------------------
607 
608  ori_x[i] = (et[i]->get_mp()).get_ori_x() ;
609 
610  xgg[i] = factx * (et[i]->xa_barycenter() - ori_x[i]) ;
611 
612  } // fin de la boucle sur les etoiles
613 
614  xgg1 = xgg[0] ;
615  xgg2 = xgg[1] ;
616 
617 //---------------------------------
618 // Position de l'axe de rotation
619 //---------------------------------
620 
621  int relat = ( et[0]->is_relativistic() ) ? 1 : 0 ;
622  double ori_x1 = ori_x[0] ;
623  double ori_x2 = ori_x[1] ;
624 
625  if ( et[0]->get_eos() == et[1]->get_eos() && mass1 == mass2 ) {
626 
627  x_axe = 0. ;
628 
629  }
630  else {
631 
632  Param paraxe ;
633  paraxe.add_int(relat) ;
634  paraxe.add_double( ori_x1, 0) ;
635  paraxe.add_double( ori_x2, 1) ;
636  paraxe.add_double( dnulg[0], 2) ;
637  paraxe.add_double( dnulg[1], 3) ;
638  paraxe.add_double( asn2[0], 4) ;
639  paraxe.add_double( asn2[1], 5) ;
640  paraxe.add_double( dasn2[0], 6) ;
641  paraxe.add_double( dasn2[1], 7) ;
642  paraxe.add_double( nyso[0], 8) ;
643  paraxe.add_double( nyso[1], 9) ;
644  paraxe.add_double( dnyso[0], 10) ;
645  paraxe.add_double( dnyso[1], 11) ;
646  paraxe.add_double( npnso2[0], 12) ;
647  paraxe.add_double( npnso2[1], 13) ;
648  paraxe.add_double( dnpnso2[0], 14) ;
649  paraxe.add_double( dnpnso2[1], 15) ;
650 
651  int nitmax_axe = 200 ;
652  int nit_axe ;
653  double precis_axe = 1.e-13 ;
654 
655  x_axe = zerosec(fonc_binaire_axe, paraxe, 0.9*ori_x1, 0.9*ori_x2,
656  precis_axe, nitmax_axe, nit_axe) ;
657 
658  cout << "Binaire::orbit : Number of iterations in zerosec for x_axe : "
659  << nit_axe << endl ;
660  }
661 
662  cout << "Binaire::orbit : x_axe [km] : " << x_axe / km << endl ;
663 
664 //-------------------------------------
665 // Calcul de la vitesse orbitale
666 //-------------------------------------
667 
668  Param parf ;
669  parf.add_int(relat) ;
670  parf.add_double( ori_x1, 0) ;
671  parf.add_double( dnulg[0], 1) ;
672  parf.add_double( asn2[0], 2) ;
673  parf.add_double( dasn2[0], 3) ;
674  parf.add_double( ny[0], 4) ;
675  parf.add_double( dny[0], 5) ;
676  parf.add_double( npn[0], 6) ;
677  parf.add_double( dnpn[0], 7) ;
678  parf.add_double( x_axe, 8) ;
679 
680  double omega1 = fact_omeg_min * omega ;
681  double omega2 = fact_omeg_max * omega ;
682  cout << "Binaire::orbit: omega1, omega2 [rad/s] : "
683  << omega1 * f_unit << " " << omega2 * f_unit << endl ;
684 
685  // Search for the various zeros in the interval [omega1,omega2]
686  // ------------------------------------------------------------
687  int nsub = 50 ; // total number of subdivisions of the interval
688  Tbl* azer = 0x0 ;
689  Tbl* bzer = 0x0 ;
690  zero_list(fonc_binaire_orbit, parf, omega1, omega2, nsub,
691  azer, bzer) ;
692 
693  // Search for the zero closest to the previous value of omega
694  // ----------------------------------------------------------
695  double omeg_min, omeg_max ;
696  int nzer = azer->get_taille() ; // number of zeros found by zero_list
697  cout << "Binaire:orbit : " << nzer <<
698  " zero(s) found in the interval [omega1, omega2]." << endl ;
699  cout << "omega, omega1, omega2 : " << omega << " " << omega1
700  << " " << omega2 << endl ;
701  cout << "azer : " << *azer << endl ;
702  cout << "bzer : " << *bzer << endl ;
703 
704  if (nzer == 0) {
705  cout <<
706  "Binaire::orbit: WARNING : no zero detected in the interval"
707  << endl << " [" << omega1 * f_unit << ", "
708  << omega2 * f_unit << "] rad/s !" << endl ;
709  omeg_min = omega1 ;
710  omeg_max = omega2 ;
711  }
712  else {
713  double dist_min = fabs(omega2 - omega1) ;
714  int i_dist_min = -1 ;
715  for (int i=0; i<nzer; i++) {
716  // Distance of previous value of omega from the center of the
717  // interval [azer(i), bzer(i)]
718  double dist = fabs( omega - 0.5 * ( (*azer)(i) + (*bzer)(i) ) ) ;
719  if (dist < dist_min) {
720  dist_min = dist ;
721  i_dist_min = i ;
722  }
723  }
724  omeg_min = (*azer)(i_dist_min) ;
725  omeg_max = (*bzer)(i_dist_min) ;
726  }
727 
728  delete azer ; // Tbl allocated by zero_list
729  delete bzer ; //
730 
731  cout << "Binaire:orbit : interval selected for the search of the zero : "
732  << endl << " [" << omeg_min << ", " << omeg_max << "] = ["
733  << omeg_min * f_unit << ", " << omeg_max * f_unit << "] rad/s " << endl ;
734 
735  // Computation of the zero in the selected interval by the secant method
736  // ---------------------------------------------------------------------
737  int nitermax = 200 ;
738  int niter ;
739  double precis = 1.e-13 ;
740  omega = zerosec_b(fonc_binaire_orbit, parf, omeg_min, omeg_max,
741  precis, nitermax, niter) ;
742 
743  cout << "Binaire::orbit : Number of iterations in zerosec for omega : "
744  << niter << endl ;
745 
746  cout << "Binaire::orbit : omega [rad/s] : "
747  << omega * f_unit << endl ;
748 
749 
750  /* We do not use the method below.
751  // Direct calculation
752  //--------------------
753 
754  double om2_et1 ;
755  double om2_et2 ;
756 
757  double x_et1 = ori_x1 - x_axe ;
758  double x_et2 = ori_x2 - x_axe ;
759 
760  if (relat == 1) {
761 
762  double andan_et1 = 0.5 * dasn2[0] + asn2[0] * dnulg[0] ;
763  double andan_et2 = 0.5 * dasn2[1] + asn2[1] * dnulg[1] ;
764 
765  double bpb_et1 = x_et1 * x_et1 - 2. * nyso[0] * x_et1 + npnso2[0] ;
766  double bpb_et2 = x_et2 * x_et2 - 2. * nyso[1] * x_et2 + npnso2[1] ;
767 
768  double cpc_et1 = 0.5 * dnpnso2[0] + x_et1 * (1. - dnyso[0]) - nyso[0] ;
769  double cpc_et2 = 0.5 * dnpnso2[1] + x_et2 * (1. - dnyso[1]) - nyso[1] ;
770 
771  om2_et1 = dnulg[0] / (andan_et1 * bpb_et1 + asn2[0] * cpc_et1) ;
772  om2_et2 = dnulg[1] / (andan_et2 * bpb_et2 + asn2[1] * cpc_et2) ;
773 
774  }
775  else {
776 
777  om2_et1 = dnulg[0] / x_et1 ;
778  om2_et2 = dnulg[1] / x_et2 ;
779 
780  }
781 
782  double ome_et1 = sqrt( om2_et1 ) ;
783  double ome_et2 = sqrt( om2_et2 ) ;
784 
785  double diff_om1 = 1. - ome_et1 / ome_et2 ;
786  double diff_om2 = 1. - ome_et1 / omega ;
787 
788  cout << "Binaire::orbit : omega (direct) [rad/s] : "
789  << ome_et1 * f_unit << endl ;
790 
791  cout << "Binaire::orbit : relative difference between " << endl
792  << " omega_star1 and omega_star2 (direct) : " << diff_om1 << endl
793  << " omega (direct) and omega (iretation) : " << diff_om2 << endl ;
794  */
795 
796 }
797 
798 
799 //*************************************************
800 // Function used for search of the rotation axis
801 //*************************************************
802 
803 double fonc_binaire_axe(double x_rot, const Param& paraxe) {
804 
805  int relat = paraxe.get_int() ;
806 
807  double ori_x1 = paraxe.get_double(0) ;
808  double ori_x2 = paraxe.get_double(1) ;
809  double dnulg_1 = paraxe.get_double(2) ;
810  double dnulg_2 = paraxe.get_double(3) ;
811  double asn2_1 = paraxe.get_double(4) ;
812  double asn2_2 = paraxe.get_double(5) ;
813  double dasn2_1 = paraxe.get_double(6) ;
814  double dasn2_2 = paraxe.get_double(7) ;
815  double nyso_1 = paraxe.get_double(8) ;
816  double nyso_2 = paraxe.get_double(9) ;
817  double dnyso_1 = paraxe.get_double(10) ;
818  double dnyso_2 = paraxe.get_double(11) ;
819  double npnso2_1 = paraxe.get_double(12) ;
820  double npnso2_2 = paraxe.get_double(13) ;
821  double dnpnso2_1 = paraxe.get_double(14) ;
822  double dnpnso2_2 = paraxe.get_double(15) ;
823 
824  double om2_star1 ;
825  double om2_star2 ;
826 
827  double x1 = ori_x1 - x_rot ;
828  double x2 = ori_x2 - x_rot ;
829 
830  if (relat == 1) {
831 
832  double andan_1 = 0.5 * dasn2_1 + asn2_1 * dnulg_1 ;
833  double andan_2 = 0.5 * dasn2_2 + asn2_2 * dnulg_2 ;
834 
835  double bpb_1 = x1 * x1 - 2. * nyso_1 * x1 + npnso2_1 ;
836  double bpb_2 = x2 * x2 - 2. * nyso_2 * x2 + npnso2_2 ;
837 
838  double cpc_1 = 0.5 * dnpnso2_1 + x1 * (1. - dnyso_1) - nyso_1 ;
839  double cpc_2 = 0.5 * dnpnso2_2 + x2 * (1. - dnyso_2) - nyso_2 ;
840 
841  om2_star1 = dnulg_1 / (andan_1 * bpb_1 + asn2_1 * cpc_1) ;
842  om2_star2 = dnulg_2 / (andan_2 * bpb_2 + asn2_2 * cpc_2) ;
843 
844  }
845  else {
846 
847  om2_star1 = dnulg_1 / x1 ;
848  om2_star2 = dnulg_2 / x2 ;
849 
850  }
851 
852  return om2_star1 - om2_star2 ;
853 
854 }
855 
856 //*****************************************************************************
857 // Fonction utilisee pour la recherche de omega par la methode de la secante
858 //*****************************************************************************
859 
860 double fonc_binaire_orbit(double om, const Param& parf) {
861 
862  int relat = parf.get_int() ;
863 
864  double xc = parf.get_double(0) ;
865  double dnulg = parf.get_double(1) ;
866  double asn2 = parf.get_double(2) ;
867  double dasn2 = parf.get_double(3) ;
868  double ny = parf.get_double(4) ;
869  double dny = parf.get_double(5) ;
870  double npn = parf.get_double(6) ;
871  double dnpn = parf.get_double(7) ;
872  double x_axe = parf.get_double(8) ;
873 
874  double xx = xc - x_axe ;
875  double om2 = om*om ;
876 
877  double dphi_cent ;
878 
879  if (relat == 1) {
880  double bpb = om2 * xx*xx - 2*om * ny * xx + npn ;
881 
882  dphi_cent = ( asn2* ( om* (ny + xx*dny) - om2*xx - 0.5*dnpn )
883  - 0.5*bpb* dasn2 )
884  / ( 1 - asn2 * bpb ) ;
885  }
886  else {
887  dphi_cent = - om2*xx ;
888  }
889 
890  return dnulg + dphi_cent ;
891 
892 }
893 
894 
895 }
const Tenseur & get_logn_auto_regu() const
Returns the regular part of the logarithm of the part of the lapse N generated principaly by the star...
Definition: etoile.h:711
Component of a tensorial field *** DEPRECATED : use class Scalar instead ***.
Definition: cmp.h:446
const Cmp & dsdx() const
Returns of *this , where .
Definition: cmp_deriv.C:151
const Map & get_mp() const
Returns the mapping.
Definition: etoile.h:662
void add_int(const int &n, int position=0)
Adds the address of a new int to the list.
Definition: param.C:249
const Tenseur & get_a_car() const
Returns the total conformal factor .
Definition: etoile.h:736
Lorene prototypes.
Definition: app_hor.h:67
Standard units of space, time and mass.
Tensor field of valence 0 (or component of a tensorial field).
Definition: scalar.h:393
const Tenseur & get_shift() const
Returns the total shift vector .
Definition: etoile.h:733
Base class for coordinate mappings.
Definition: map.h:688
Tenseur flat_scalar_prod(const Tenseur &t1, const Tenseur &t2)
Scalar product of two Tenseur when the metric is : performs the contraction of the last index of t1 w...
const Base_vect_cart ref_triad
Cartesian triad of the absolute reference frame.
Definition: binaire.h:115
double zerosec_b(double(*f)(double, const Param &), const Param &par, double a, double b, double precis, int nitermax, int &niter)
Finding the zero a function on a bounded domain.
Definition: zerosec_borne.C:71
double x_axe
Absolute X coordinate of the rotation axis.
Definition: binaire.h:136
virtual double xa_barycenter() const
Absolute coordinate X of the barycenter of the baryon density, defined according to the formula wher...
void orbit_eqmass(double fact_omeg_min, double fact_omeg_max, double mass1, double mass2, double &xgg1, double &xgg2)
Computes the orbital angular velocity { omega} and the position of the rotation axis { x_axe}...
double get_rot_phi() const
Returns the angle between the x –axis and X –axis.
Definition: map.h:793
double zerosec(double(*f)(double, const Param &), const Param &par, double a, double b, double precis, int nitermax, int &niter, bool abort=true)
Finding the zero a function.
Definition: zerosec.C:92
const Tenseur & get_d_logn_auto_div() const
Returns the gradient of logn_auto_div.
Definition: etoile.h:722
const Tenseur & get_logn_comp() const
Returns the part of the lapse logarithm (gravitational potential at the Newtonian limit) generated pr...
Definition: etoile.h:1119
Etoile_bin * et[2]
Array of the two stars (to perform loops on the stars): { et[0]} contains the address of { star1} and...
Definition: binaire.h:127
const int & get_int(int position=0) const
Returns the reference of a int stored in the list.
Definition: param.C:295
const Tenseur & get_loggam() const
Returns the logarithm of the Lorentz factor between the fluid and the co-orbiting observer...
Definition: etoile.h:1114
void change_triad(const Base_vect &new_triad)
Sets a new vectorial basis (triad) of decomposition and modifies the components accordingly.
Definition: tenseur.C:684
double omega
Angular velocity with respect to an asymptotically inertial observer.
Definition: binaire.h:132
const Base_vect * get_triad() const
Returns the vectorial basis (triad) on which the components are defined.
Definition: tenseur.h:707
void zero_list(double(*f)(double, const Param &), const Param &par, double xmin, double xmax, int nsub, Tbl *&az, Tbl *&bz)
Locates approximatively all the zeros of a function in a given interval.
Definition: zero_list.C:60
Parameter storage.
Definition: param.h:125
const Tenseur & get_nnn() const
Returns the total lapse function N.
Definition: etoile.h:730
void orbit(double fact_omeg_min, double fact_omeg_max, double &xgg1, double &xgg2)
Computes the orbital angular velocity { omega} and the position of the rotation axis { x_axe}...
void save_profile(const Scalar &uu, double r_min, double r_max, double theta, double phi, const char *filename)
Saves in a file the profile of a Scalar along some radial axis determined by a fixed value of ...
const Base_vect_cart & get_bvect_cart() const
Returns the Cartesian basis associated with the coordinates (x,y,z) of the mapping, i.e.
Definition: map.h:809
int get_taille() const
Gives the total size (ie dim.taille)
Definition: tbl.h:417
void add_double(const double &x, int position=0)
Adds the the address of a new double to the list.
Definition: param.C:318
const double & get_double(int position=0) const
Returns the reference of a double stored in the list.
Definition: param.C:364
Basic array class.
Definition: tbl.h:164
bool is_relativistic() const
Returns true for a relativistic star, false for a Newtonian one.
Definition: etoile.h:670
const Eos & get_eos() const
Returns the equation of state.
Definition: etoile.h:673
Tensor handling *** DEPRECATED : use class Tensor instead ***.
Definition: tenseur.h:304
const Tenseur & get_ent() const
Returns the enthalpy field.
Definition: etoile.h:676