LORENE
vector_poisson_boundary2.C
1 /*
2  * Method for vector Poisson equation inverting eqs. for V^r and eta as a block.
3  *
4  * (see file vector.h for documentation).
5  *
6  */
7 
8 /*
9  * Copyright (c) 2005 Jerome Novak
10  *
11  * This file is part of LORENE.
12  *
13  * LORENE is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2
15  * as published by the Free Software Foundation.
16  *
17  * LORENE is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with LORENE; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25  *
26  */
27 
28 
29 
30 /*
31  * $Id: vector_poisson_boundary2.C,v 1.10 2016/12/05 16:18:18 j_novak Exp $
32  * $Log: vector_poisson_boundary2.C,v $
33  * Revision 1.10 2016/12/05 16:18:18 j_novak
34  * Suppression of some global variables (file names, loch, ...) to prevent redefinitions
35  *
36  * Revision 1.9 2014/10/13 08:53:45 j_novak
37  * Lorene classes and functions now belong to the namespace Lorene.
38  *
39  * Revision 1.8 2014/10/06 15:13:21 j_novak
40  * Modified #include directives to use c++ syntax.
41  *
42  * Revision 1.7 2008/08/20 15:07:36 n_vasset
43  * Cleaning up the code...
44  *
45  * Revision 1.5 2007/09/05 12:35:18 j_novak
46  * Homogeneous solutions are no longer obtained through the analytic formula, but
47  * by solving (again) the operator system with almost zero as r.h.s. This is to
48  * lower the condition number of the matching system.
49  *
50  * Revision 1.4 2007/01/23 17:08:46 j_novak
51  * New function pois_vect_r0.C to solve the l=0 part of the vector Poisson
52  * equation, which involves only the r-component.
53  *
54  * Revision 1.3 2005/12/30 13:39:38 j_novak
55  * Changed the Galerkin base in the nucleus to (hopefully) stabilise the solver
56  * when used in an iteration. Similar changes in the CED too.
57  *
58  * Revision 1.2 2005/02/15 15:43:18 j_novak
59  * First version of the block inversion for the vector Poisson equation (method 6).
60  *
61  *
62  * $Header: /cvsroot/Lorene/C++/Source/Tensor/vector_poisson_boundary2.C,v 1.10 2016/12/05 16:18:18 j_novak Exp $
63  *
64  */
65 
66 // C headers
67 #include <cassert>
68 #include <cstdlib>
69 #include <cmath>
70 
71 // Lorene headers
72 #include "metric.h"
73 #include "diff.h"
74 #include "param_elliptic.h"
75 #include "proto.h"
76 #include "graphique.h"
77 #include "map.h"
78 #include "utilitaires.h"
79 
80 
81 
82 namespace Lorene {
83 void Vector::poisson_boundary2(double lam, Vector& resu, Scalar boundvr, Scalar boundeta, Scalar boundmu, double dir_vr, double neum_vr, double dir_eta, double neum_eta, double dir_mu, double neum_mu) const {
84 
85  const Map_af* mpaff = dynamic_cast<const Map_af*>(mp) ;
86 #ifndef NDEBUG
87  for (int i=0; i<3; i++)
88  assert(cmp[i]->check_dzpuis(4)) ;
89  // All this has a meaning only for spherical components:
90  const Base_vect_spher* bvs = dynamic_cast<const Base_vect_spher*>(triad) ;
91  assert(bvs != 0x0) ;
92  //## ... and affine mapping, for the moment!
93  assert( mpaff != 0x0) ;
94 #endif
95 
96  if (fabs(lam + 1.) < 1.e-8) {
97 
98  cout <<" lambda = -1 is not supported by this code!" << endl;
99  abort();
100  }
101 
102 
103 
104  // Extraction of Mtbl_cf objects from boundary informations;
105  Scalar bound_vr2 = boundvr;
106  bound_vr2.set_spectral_va().ylm();
107  Scalar bound_eta2 = boundeta;
108  bound_eta2.set_spectral_va().ylm();
109  Scalar bound_mu2 = boundmu; bound_mu2.set_spectral_va().ylm();
110 
111  const Mtbl_cf *bound_vr = bound_vr2.get_spectral_va().c_cf;
112  const Mtbl_cf *bound_mu = bound_mu2.get_spectral_va().c_cf;
113  const Mtbl_cf *bound_eta = bound_eta2.get_spectral_va().c_cf;
114 
115 
116 
117 
118  // Some working objects
119  //---------------------
120  const Mg3d& mg = *mpaff->get_mg() ;
121  int nz = mg.get_nzone() ; int nzm1 = nz - 1;
122  assert(mg.get_type_r(0) == RARE) ;
123  assert(mg.get_type_r(nzm1) == UNSURR) ;
124  Scalar S_r = *cmp[0] ;
125  Scalar S_eta = eta() ;
126  Scalar het(*mpaff) ;
127  Scalar vr(*mpaff) ;
128 
129  if (S_r.get_etat() == ETATZERO) {
130  if (S_eta.get_etat() == ETATZERO) {
131 
132  S_r.annule_hard() ;
133  S_r.set_spectral_base(S_eta.get_spectral_base()) ;
134  S_eta.annule_hard() ;
135  S_eta.set_spectral_base(S_r.get_spectral_base()) ;
136  }
137  else {
138  S_r.annule_hard() ;
139  S_r.set_spectral_base(S_eta.get_spectral_base()) ;
140  }
141  }
142  if (S_eta.get_etat() == ETATZERO) {
143  S_eta.annule_hard() ;
144  S_eta.set_spectral_base(S_r.get_spectral_base()) ;
145  }
146 
147  S_r.set_spectral_va().ylm() ;
148  S_eta.set_spectral_va().ylm() ;
149  const Base_val& base = S_eta.get_spectral_va().base ;
150  Mtbl_cf sol_part_eta(mg, base) ; sol_part_eta.annule_hard() ;
151  Mtbl_cf sol_part_vr(mg, base) ; sol_part_vr.annule_hard() ;
152  Mtbl_cf sol_hom_un_eta(mg, base) ; sol_hom_un_eta.annule_hard() ;
153  Mtbl_cf sol_hom_deux_eta(mg, base) ; sol_hom_deux_eta.annule_hard() ;
154  Mtbl_cf sol_hom_trois_eta(mg, base) ; sol_hom_trois_eta.annule_hard() ;
155  Mtbl_cf sol_hom_quatre_eta(mg, base) ; sol_hom_quatre_eta.annule_hard() ;
156  Mtbl_cf sol_hom_un_vr(mg, base) ; sol_hom_un_vr.annule_hard() ;
157  Mtbl_cf sol_hom_deux_vr(mg, base) ; sol_hom_deux_vr.annule_hard() ;
158  Mtbl_cf sol_hom_trois_vr(mg, base) ; sol_hom_trois_vr.annule_hard() ;
159  Mtbl_cf sol_hom_quatre_vr(mg, base) ; sol_hom_quatre_vr.annule_hard() ;
160 
161  // Solution of the l=0 part for Vr
162  //---------------------------------
163  Scalar sou_l0 = (*cmp[0]) / (1. + lam) ;
164  sou_l0.set_spectral_va().ylm() ;
165 
166  Param_elliptic param_l0(sou_l0) ;
167  for (int l=0; l<nz; l++){
168  param_l0.set_poisson_vect_r(l, true) ;
169  }
170 
171 
172  Scalar vrl0 = sou_l0.sol_elliptic_boundary(param_l0, *bound_vr, dir_vr, neum_vr) ;
173 
174 
175  // Build-up & inversion of the system for (eta, V^r) in each domain (except for the nucleus!)
176  //-----------------------------------------------------------------
177 
178 
179  // Shells
180  //-------
181 
182  int nr = mg.get_nr(1) ;
183  int nt = mg.get_nt(1) ;
184  int np = mg.get_np(1) ;
185  double alpha = mpaff->get_alpha()[1] ; double alp2 = alpha*alpha ;
186  double beta = mpaff->get_beta()[1] ;
187 
188  int l_q = 0 ; int m_q = 0; int base_r = 0 ;
189  for (int zone=1 ; zone<nzm1 ; zone++) {
190  nr = mg.get_nr(zone) ;
191  assert (nr > 5) ;
192  assert(nt == mg.get_nt(zone)) ;
193  assert(np == mg.get_np(zone)) ;
194  alpha = mpaff->get_alpha()[zone] ;
195  beta = mpaff->get_beta()[zone] ;
196  double ech = beta / alpha ;
197 
198  // Loop on l and m
199  //----------------
200  for (int k=0 ; k<np+1 ; k++) {
201  for (int j=0 ; j<nt ; j++) {
202  base.give_quant_numbers(zone, k, j, m_q, l_q, base_r) ;
203  if ( (nullite_plm(j, nt, k, np, base) == 1) && (l_q != 0) ) {
204  int dege1 = 2 ; //degeneracy of eq.1
205  int dege2 = 2 ; //degeneracy of eq.2
206  int nr_eq1 = nr - dege1 ; //Eq.1 is for eta
207  int nr_eq2 = nr - dege2 ; //Eq.2 is for V^r
208  int nrtot = 2*nr ;
209  Matrice oper(nrtot, nrtot) ; oper.set_etat_qcq() ;
210  Tbl sec_membre(nrtot) ; sec_membre.set_etat_qcq() ;
211  Diff_x2dsdx2 x2d2(base_r, nr); const Matrice& m2d2 = x2d2.get_matrice() ;
212  Diff_xdsdx2 xd2(base_r, nr) ; const Matrice& mxd2 = xd2.get_matrice() ;
213  Diff_dsdx2 d2(base_r, nr) ; const Matrice& md2 = d2.get_matrice() ;
214  Diff_xdsdx xd(base_r, nr) ; const Matrice& mxd = xd.get_matrice() ;
215  Diff_dsdx d1(base_r, nr) ; const Matrice& md = d1.get_matrice() ;
216  Diff_id id(base_r, nr) ; const Matrice& mid = id.get_matrice() ;
217 
218  // Building the operator
219  //----------------------
220  for (int lin=0; lin<nr_eq1; lin++) {
221  for (int col=0; col<nr; col++)
222  oper.set(lin,col)
223  = m2d2(lin,col) + 2*ech*mxd2(lin,col) + ech*ech*md2(lin,col)
224  + 2*(mxd(lin,col) + ech*md(lin,col))
225  - (lam+1)*l_q*(l_q+1)*mid(lin,col) ;
226  for (int col=0; col<nr; col++)
227  oper.set(lin,col+nr)
228  = lam*(mxd(lin,col) + ech*md(lin,col))
229  + 2*(1+lam)*mid(lin,col) ;
230  }
231  oper.set(nr_eq1, 0) = 1 ;
232  for (int col=1; col<2*nr; col++)
233  oper.set(nr_eq1, col) = 0 ;
234  oper.set(nr_eq1+1, 0) = 0 ;
235  oper.set(nr_eq1+1, 1) = 1 ;
236  for (int col=2; col<2*nr; col++)
237  oper.set(nr_eq1+1, col) = 0 ;
238  for (int lin=0; lin<nr_eq2; lin++) {
239  for (int col=0; col<nr; col++)
240  oper.set(lin+nr,col)
241  = -l_q*(l_q+1)*(lam*(mxd(lin,col) + ech*md(lin,col))
242  - (lam+2)*mid(lin,col)) ;
243  for (int col=0; col<nr; col++)
244  oper.set(lin+nr, col+nr)
245  = (lam+1)*(m2d2(lin,col) + 2*ech*mxd2(lin,col)
246  + ech*ech*md2(lin,col)
247  + 2*(mxd(lin,col) + ech*md(lin,col)))
248  -(2*(lam+1)+l_q*(l_q+1))*mid(lin,col) ;
249  }
250  for (int col=0; col<nr; col++)
251  oper.set(nr+nr_eq2, col) = 0 ;
252  oper.set(nr+nr_eq2, nr) = 1 ;
253  for (int col=nr+1; col<2*nr; col++)
254  oper.set(nr+nr_eq2, col) = 0 ;
255  for (int col=0; col<nr+1; col++)
256  oper.set(nr+nr_eq2+1, col) = 0 ;
257  oper.set(nr+nr_eq2+1, nr+1) = 1 ;
258  for (int col=nr+2; col<2*nr; col++)
259  oper.set(nr+nr_eq2+1, col) = 0 ;
260 
261  oper.set_lu() ;
262 
263  // Filling the r.h.s
264  //------------------
265  Tbl sr(nr) ; sr.set_etat_qcq() ;
266  Tbl seta(nr) ; seta.set_etat_qcq() ;
267  for (int i=0; i<nr; i++) {
268  sr.set(i) = (*S_r.get_spectral_va().c_cf)(zone, k, j, i);
269  seta.set(i) = (*S_eta.get_spectral_va().c_cf)(zone, k, j, i) ;
270  }
271  Tbl xsr= sr ; Tbl x2sr= sr ;
272  Tbl xseta= seta ; Tbl x2seta = seta ;
273  multx2_1d(nr, &x2sr.t, base_r) ; multx_1d(nr, &xsr.t, base_r) ;
274  multx2_1d(nr, &x2seta.t, base_r) ; multx_1d(nr, &xseta.t, base_r) ;
275 
276  for (int i=0; i<nr_eq1; i++)
277  sec_membre.set(i) = alpha*(alpha*x2seta(i) + 2*beta*xseta(i))
278  + beta*beta*seta(i);
279  sec_membre.set(nr_eq1) = 0 ;
280  sec_membre.set(nr_eq1+1) = 0 ;
281  for (int i=0; i<nr_eq2; i++)
282  sec_membre.set(i+nr) = beta*beta*sr(i)
283  + alpha*(alpha*x2sr(i) + 2*beta*xsr(i)) ;
284  sec_membre.set(nr+nr_eq2) = 0 ;
285  sec_membre.set(nr+nr_eq2+1) = 0 ;
286 
287  // Inversion of the "big" operator
288  //--------------------------------
289  Tbl big_res = oper.inverse(sec_membre) ;
290  for (int i=0; i<nr; i++) {
291  sol_part_eta.set(zone, k, j, i) = big_res(i) ;
292  sol_part_vr.set(zone, k, j, i) = big_res(nr+i) ;
293  }
294 
295  // Getting the homogeneous solutions
296  //----------------------------------
297  sec_membre.annule_hard() ;
298  sec_membre.set(nr_eq1) = 1 ;
299  big_res = oper.inverse(sec_membre) ;
300  for (int i=0 ; i<nr ; i++) {
301  sol_hom_un_eta.set(zone, k, j, i) = big_res(i) ;
302  sol_hom_un_vr.set(zone, k, j, i) = big_res(nr+i) ;
303  }
304  sec_membre.set(nr_eq1) = 0 ;
305  sec_membre.set(nr_eq1+1) = 1 ;
306  big_res = oper.inverse(sec_membre) ;
307  for (int i=0 ; i<nr ; i++) {
308  sol_hom_deux_eta.set(zone, k, j, i) = big_res(i) ;
309  sol_hom_deux_vr.set(zone, k, j, i) = big_res(nr+i) ;
310  }
311  sec_membre.set(nr_eq1+1) = 0 ;
312  sec_membre.set(nr+nr_eq2) = 1 ;
313  big_res = oper.inverse(sec_membre) ;
314  for (int i=0 ; i<nr ; i++) {
315  sol_hom_trois_eta.set(zone, k, j, i) = big_res(i) ;
316  sol_hom_trois_vr.set(zone, k, j, i) = big_res(nr+i) ;
317  }
318  sec_membre.set(nr+nr_eq2) = 0 ;
319  sec_membre.set(nr+nr_eq2+1) = 1 ;
320  big_res = oper.inverse(sec_membre) ;
321  for (int i=0 ; i<nr ; i++) {
322  sol_hom_quatre_eta.set(zone, k, j, i) = big_res(i) ;
323  sol_hom_quatre_vr.set(zone, k, j, i) = big_res(nr+i) ;
324  }
325 
326  }
327  }
328  }
329  }
330 
331  // Compactified external domain
332  //-----------------------------
333  nr = mg.get_nr(nzm1) ;
334  assert(nt == mg.get_nt(nzm1)) ;
335  assert(np == mg.get_np(nzm1)) ;
336  alpha = mpaff->get_alpha()[nzm1] ; alp2 = alpha*alpha ;
337  assert (nr > 4) ;
338 
339  // Loop on l and m
340  //----------------
341  for (int k=0 ; k<np+1 ; k++) {
342  for (int j=0 ; j<nt ; j++) {
343  base.give_quant_numbers(nzm1, k, j, m_q, l_q, base_r) ;
344  if ( (nullite_plm(j, nt, k, np, base) == 1) && (l_q != 0) ) {
345  int dege1 = 3; //degeneracy of eq.1
346  int dege2 = (l_q == 1 ? 2 : 3); //degeneracy of eq.2
347  int nr_eq1 = nr - dege1 ; //Eq.1 is for eta
348  int nr_eq2 = nr - dege2 ; //Eq.2 is the div-free condition
349  int nrtot = 2*nr ;
350  Matrice oper(nrtot, nrtot) ; oper.set_etat_qcq() ;
351  Tbl sec_membre(nrtot) ; sec_membre.set_etat_qcq() ;
352  Diff_dsdx2 d2(base_r, nr) ; const Matrice& md2 = d2.get_matrice() ;
353  Diff_sxdsdx sxd(base_r, nr) ; const Matrice& mxd = sxd.get_matrice() ;
354  Diff_sx2 sx2(base_r, nr) ; const Matrice& ms2 = sx2.get_matrice() ;
355 
356  // Building the operator
357  //----------------------
358  for (int lin=0; lin<nr_eq1; lin++) {
359  for (int col=0; col<nr; col++)
360  oper.set(lin,col)
361  = (md2(lin,col) - (lam+1)*l_q*(l_q+1)*ms2(lin,col))/alp2 ;
362  for (int col=0; col<nr; col++)
363  oper.set(lin,col+nr) =
364  (-lam*mxd(lin,col) + 2*(1+lam)*ms2(lin,col)) / alp2 ;
365  }
366  for (int col=0; col<nr; col++)
367  oper.set(nr_eq1, col) = 1 ;
368  for (int col=nr; col<nrtot; col++)
369  oper.set(nr_eq1, col) = 0 ;
370  int pari = -1 ;
371  for (int col=0; col<nr; col++) {
372  oper.set(nr_eq1+1, col) = pari*col*col ;
373  pari = pari ;
374  }
375  for (int col=nr; col<nrtot; col++)
376  oper.set(nr_eq1+1, col) = 0 ;
377  oper.set(nr_eq1+2, 0) = 1 ;
378  for (int col=1; col<nrtot; col++)
379  oper.set(nr_eq1+2, col) = 0 ;
380  for (int lin=0; lin<nr_eq2; lin++) {
381  for (int col=0; col<nr; col++)
382  oper.set(lin+nr,col) = (l_q*(l_q+1)*(lam*mxd(lin,col)
383  + (lam+2)*ms2(lin,col))) / alp2 ;
384  for (int col=0; col<nr; col++)
385  oper.set(lin+nr, col+nr) = ((lam+1)*md2(lin,col)
386  - (2*(lam+1) + l_q*(l_q+1))*ms2(lin,col)) / alp2 ;
387  }
388  for (int col=0; col<nr; col++)
389  oper.set(nr+nr_eq2, col) = 0 ;
390  for (int col=nr; col<nrtot; col++)
391  oper.set(nr+nr_eq2, col) = 1 ;
392  for (int col=0; col<nr; col++)
393  oper.set(nr+nr_eq2+1, col) = 0 ;
394  pari = -1 ;
395  for (int col=0; col<nr; col++) {
396  oper.set(nr+nr_eq2+1, nr+col) = pari*col*col ;
397  pari = pari ;
398  }
399  if (l_q > 1) {
400  for (int col=0; col<nr; col++)
401  oper.set(nr+nr_eq2+2, col) = 0 ;
402  oper.set(nr+nr_eq2+2, nr) = 1 ;
403  for (int col=nr+1; col<nrtot; col++)
404  oper.set(nr+nr_eq2+2, col) = 0 ;
405  }
406  oper.set_lu() ;
407 
408  // Filling the r.h.s
409  //------------------
410  for (int i=0; i<nr_eq1; i++)
411  sec_membre.set(i) = (*S_eta.get_spectral_va().c_cf)(nzm1, k, j, i) ;
412  for (int i=nr_eq1; i<nr; i++)
413  sec_membre.set(i) = 0 ;
414  for (int i=0; i<nr_eq2; i++)
415  sec_membre.set(i+nr) =(*S_r.get_spectral_va().c_cf)(nzm1, k, j, i);
416  for (int i=nr_eq2; i<nr; i++)
417  sec_membre.set(nr+i) = 0 ;
418  Tbl big_res = oper.inverse(sec_membre) ;
419 
420  // Putting coefficients of h and v to individual arrays
421  //-----------------------------------------------------
422  for (int i=0; i<nr; i++) {
423  sol_part_eta.set(nzm1, k, j, i) = big_res(i) ;
424  sol_part_vr.set(nzm1, k, j, i) = big_res(i+nr) ;
425  }
426 
427  // Homogeneous solutions (only 1/r^(l+2) and 1/r^l in the CED)
428  //------------------------------------------------------------
429  if (l_q == 1) {
430  Tbl sol_hom1 = solh(nr, 0, 0., base_r) ;
431  Tbl sol_hom2 = solh(nr, 2, 0., base_r) ;
432  double fac_eta = lam + 2. ;
433  double fac_vr = 2*lam + 2. ;
434  for (int i=0 ; i<nr ; i++) {
435  sol_hom_deux_eta.set(nzm1, k, j, i) = sol_hom2(i) ;
436  sol_hom_quatre_eta.set(nzm1, k, j, i) = fac_eta*sol_hom1(i) ;
437  sol_hom_deux_vr.set(nzm1, k, j, i) = -2*sol_hom2(i) ;
438  sol_hom_quatre_vr.set(nzm1, k, j, i) = fac_vr*sol_hom1(i) ;
439  }
440  }
441  else {
442  sec_membre.annule_hard() ;
443  sec_membre.set(nr-1) = 1 ;
444  big_res = oper.inverse(sec_membre) ;
445 
446  for (int i=0; i<nr; i++) {
447  sol_hom_deux_eta.set(nzm1, k, j, i) = big_res(i) ;
448  sol_hom_deux_vr.set(nzm1, k, j, i) = big_res(nr+i) ;
449  }
450  sec_membre.set(nr-1) = 0 ;
451  sec_membre.set(2*nr-1) = 1 ;
452  big_res = oper.inverse(sec_membre) ;
453  for (int i=0; i<nr; i++) {
454  sol_hom_quatre_eta.set(nzm1, k, j, i) = big_res(i) ;
455  sol_hom_quatre_vr.set(nzm1, k, j, i) = big_res(nr+i) ;
456  }
457  }
458  }
459  }
460  }
461 
462  // Now let's match everything ...
463  //-------------------------------
464 
465  // Resulting V^r & eta
466  vr.set_etat_qcq() ;
467  vr.set_spectral_base(base) ;
469  Mtbl_cf& cf_vr = *vr.set_spectral_va().c_cf ;
470  cf_vr.annule_hard() ;
471  het.set_etat_qcq() ;
472  het.set_spectral_base(base) ;
474  Mtbl_cf& cf_eta = *het.set_spectral_va().c_cf ;
475  cf_eta.annule_hard() ;
476  int taille = 4*nzm1 -2 ; // Two less than R3 case
477  Tbl sec_membre(taille) ;
478  Matrice systeme(taille, taille) ;
479  systeme.set_etat_qcq() ;
480  int ligne ; int colonne ;
481 
482  // Loop on l and m
483  //----------------
484  for (int k=0 ; k<np+1 ; k++)
485  for (int j=0 ; j<nt ; j++) {
486  base.give_quant_numbers(0, k, j, m_q, l_q, base_r) ;
487  if ((nullite_plm(j, nt, k, np, base) == 1)&&(l_q != 0)) {
488 
489  ligne = 0 ;
490  colonne = 0 ;
491  systeme.annule_hard() ;
492  sec_membre.annule_hard() ;
493 
494 
495  //shell 1 (boundary condition)
496  int zone1 = 1;
497  nr = mg.get_nr(zone1) ;
498  alpha = mpaff->get_alpha()[zone1] ;
499 
500  // Here we prepare for a Robyn-type boundary condition on eta.
501  // Parameters are dir_eta and neum_eta
502  systeme.set(ligne, colonne)
503  = -dir_eta*sol_hom_un_eta.val_in_bound_jk(zone1, j, k) ;
504  systeme.set(ligne, colonne+1)
505  = -dir_eta * sol_hom_deux_eta.val_in_bound_jk(zone1, j, k) ;
506  systeme.set(ligne, colonne+2)
507  = -dir_eta*sol_hom_trois_eta.val_in_bound_jk(zone1, j, k) ;
508  systeme.set(ligne, colonne+3)
509  = -dir_eta*sol_hom_quatre_eta.val_in_bound_jk(zone1, j, k) ;
510 
511 
512 
513 
514  sec_membre.set(ligne) += dir_eta* sol_part_eta.val_in_bound_jk(zone1, j, k) ;
515 
516 
517 
518  int pari = -1 ;
519  for (int i=0; i<nr; i++) {
520  systeme.set(ligne, colonne)
521  -= neum_eta*pari*i*i*sol_hom_un_eta(zone1, k, j, i)/alpha ;
522  systeme.set(ligne, colonne+1)
523  -= neum_eta*pari*i*i*sol_hom_deux_eta(zone1, k, j, i)/alpha ;
524  systeme.set(ligne, colonne+2)
525  -= neum_eta*pari*i*i*sol_hom_trois_eta(zone1, k, j, i)/alpha ;
526  systeme.set(ligne, colonne+3)
527  -= neum_eta*pari*i*i*sol_hom_quatre_eta(zone1, k, j, i)/alpha ;
528  sec_membre.set(ligne)
529  += neum_eta*pari*i*i* sol_part_eta(zone1, k, j, i)/alpha ;
530  pari = -pari ;
531  }
532 
533  sec_membre.set(ligne) -= (*bound_eta).val_in_bound_jk(1,j,k);
534  ligne++ ;
535 
536 
537 
538  // ... and their couterparts for V^r
539  systeme.set(ligne, colonne)
540  = - dir_vr*sol_hom_un_vr.val_in_bound_jk(zone1, j, k) ;
541  systeme.set(ligne, colonne+1)
542  = - dir_vr*sol_hom_deux_vr.val_in_bound_jk(zone1, j, k) ;
543  systeme.set(ligne, colonne+2)
544  = -dir_vr*sol_hom_trois_vr.val_in_bound_jk(zone1, j, k) ;
545  systeme.set(ligne, colonne+3)
546  = -dir_vr*sol_hom_quatre_vr.val_in_bound_jk(zone1, j, k) ;
547  sec_membre.set(ligne) += dir_vr*sol_part_vr.val_in_bound_jk(zone1, j, k) ;
548 
549 
550 
551 
552  pari = -1 ;
553  for (int i=0; i<nr; i++) {
554  systeme.set(ligne, colonne)
555  -= neum_vr*pari*i*i*sol_hom_un_vr(zone1, k, j, i)/alpha ;
556  systeme.set(ligne, colonne+1)
557  -= neum_vr*pari*i*i*sol_hom_deux_vr(zone1, k, j, i)/alpha ;
558  systeme.set(ligne, colonne+2)
559  -= neum_vr*pari*i*i*sol_hom_trois_vr(zone1, k, j, i)/alpha ;
560  systeme.set(ligne, colonne+3)
561  -= neum_vr*pari*i*i*sol_hom_quatre_vr(zone1, k, j, i)/alpha ;
562  sec_membre.set(ligne)
563  += neum_vr*pari*i*i* sol_part_vr(zone1, k, j, i)/alpha ;
564  pari = -pari ;
565  }
566 
567  sec_membre.set(ligne) -= (*bound_vr).val_in_bound_jk(1,j,k);
568  ligne++ ;
569 
570 
571 
572 
573  // Values in 1: beginning with solution in eta...
574 
575  systeme.set(ligne, colonne)
576  += sol_hom_un_eta.val_out_bound_jk(zone1, j, k) ;
577  systeme.set(ligne, colonne+1)
578  += sol_hom_deux_eta.val_out_bound_jk(zone1, j, k) ;
579  systeme.set(ligne, colonne+2)
580  += sol_hom_trois_eta.val_out_bound_jk(zone1, j, k) ;
581  systeme.set(ligne, colonne+3)
582  += sol_hom_quatre_eta.val_out_bound_jk(zone1, j, k) ;
583  sec_membre.set(ligne) -= sol_part_eta.val_out_bound_jk(zone1, j, k) ;
584  ligne++ ;
585  // ... and their counterparts for V^r
586  systeme.set(ligne, colonne)
587  += sol_hom_un_vr.val_out_bound_jk(zone1, j, k) ;
588  systeme.set(ligne, colonne+1)
589  += sol_hom_deux_vr.val_out_bound_jk(zone1, j, k) ;
590  systeme.set(ligne, colonne+2)
591  += sol_hom_trois_vr.val_out_bound_jk(zone1, j, k) ;
592  systeme.set(ligne, colonne+3)
593  += sol_hom_quatre_vr.val_out_bound_jk(zone1, j, k) ;
594  sec_membre.set(ligne) -= sol_part_vr.val_out_bound_jk(zone1, j, k) ;
595  ligne++ ;
596 
597  //derivative at 1
598  pari = 1 ;
599  for (int i=0; i<nr; i++) {
600  systeme.set(ligne, colonne)
601  += pari*i*i*sol_hom_un_eta(zone1, k, j, i)/alpha ;
602  systeme.set(ligne, colonne+1)
603  += pari*i*i*sol_hom_deux_eta(zone1, k, j, i)/alpha ;
604  systeme.set(ligne, colonne+2)
605  += pari*i*i*sol_hom_trois_eta(zone1, k, j, i)/alpha ;
606  systeme.set(ligne, colonne+3)
607  += pari*i*i*sol_hom_quatre_eta(zone1, k, j, i)/alpha ;
608  sec_membre.set(ligne)
609  -= pari*i*i* sol_part_eta(zone1, k, j, i)/alpha ;
610  pari = pari ;
611  }
612  ligne++ ;
613  // ... and their counterparts for V^r
614  pari = 1 ;
615  for (int i=0; i<nr; i++) {
616  systeme.set(ligne, colonne)
617  += pari*i*i*sol_hom_un_vr(zone1, k, j, i)/alpha ;
618  systeme.set(ligne, colonne+1)
619  += pari*i*i*sol_hom_deux_vr(zone1, k, j, i)/alpha ;
620  systeme.set(ligne, colonne+2)
621  += pari*i*i*sol_hom_trois_vr(zone1, k, j, i)/alpha ;
622  systeme.set(ligne, colonne+3)
623  += pari*i*i*sol_hom_quatre_vr(zone1, k, j, i)/alpha ;
624  sec_membre.set(ligne)
625  -= pari*i*i* sol_part_vr(zone1, k, j, i)/alpha ;
626  pari = pari ;
627  }
628  colonne += 4 ;
629 
630  // Other shells
631  if ( nz <= 2){
632  cout <<"WARNING!! Mapping must contain at least 2 shells!!" << endl;}
633  for (int zone=2 ; zone<nzm1 ; zone++) {
634 
635  nr = mg.get_nr(zone) ;
636  alpha = mpaff->get_alpha()[zone] ;
637  ligne -= 3 ;
638  systeme.set(ligne, colonne)
639  = -sol_hom_un_eta.val_in_bound_jk(zone, j, k) ;
640  systeme.set(ligne, colonne+1)
641  = -sol_hom_deux_eta.val_in_bound_jk(zone, j, k) ;
642  systeme.set(ligne, colonne+2)
643  = -sol_hom_trois_eta.val_in_bound_jk(zone, j, k) ;
644  systeme.set(ligne, colonne+3)
645  = -sol_hom_quatre_eta.val_in_bound_jk(zone, j, k) ;
646  sec_membre.set(ligne) += sol_part_eta.val_in_bound_jk(zone, j, k) ;
647  ligne++ ;
648  // ... and their counterparts for V^r
649  systeme.set(ligne, colonne)
650  = -sol_hom_un_vr.val_in_bound_jk(zone, j, k) ;
651  systeme.set(ligne, colonne+1)
652  = -sol_hom_deux_vr.val_in_bound_jk(zone, j, k) ;
653  systeme.set(ligne, colonne+2)
654  = -sol_hom_trois_vr.val_in_bound_jk(zone, j, k) ;
655  systeme.set(ligne, colonne+3)
656  = -sol_hom_quatre_vr.val_in_bound_jk(zone, j, k) ;
657  sec_membre.set(ligne) += sol_part_vr.val_in_bound_jk(zone, j, k) ;
658  ligne++ ;
659 
660  //derivative of (x+echelle)^(l-1) at -1
661  pari = -1 ;
662  for (int i=0; i<nr; i++) {
663  systeme.set(ligne, colonne)
664  -= pari*i*i*sol_hom_un_eta(zone, k, j, i)/alpha ;
665  systeme.set(ligne, colonne+1)
666  -= pari*i*i*sol_hom_deux_eta(zone, k, j, i)/alpha ;
667  systeme.set(ligne, colonne+2)
668  -= pari*i*i*sol_hom_trois_eta(zone, k, j, i)/alpha ;
669  systeme.set(ligne, colonne+3)
670  -= pari*i*i*sol_hom_quatre_eta(zone, k, j, i)/alpha ;
671  sec_membre.set(ligne)
672  += pari*i*i* sol_part_eta(zone, k, j, i)/alpha ;
673  pari = -pari ;
674  }
675  ligne++ ;
676  // ... and their counterparts for V^r
677  pari = -1 ;
678  for (int i=0; i<nr; i++) {
679  systeme.set(ligne, colonne)
680  -= pari*i*i*sol_hom_un_vr(zone, k, j, i)/alpha ;
681  systeme.set(ligne, colonne+1)
682  -= pari*i*i*sol_hom_deux_vr(zone, k, j, i)/alpha ;
683  systeme.set(ligne, colonne+2)
684  -= pari*i*i*sol_hom_trois_vr(zone, k, j, i)/alpha ;
685  systeme.set(ligne, colonne+3)
686  -= pari*i*i*sol_hom_quatre_vr(zone, k, j, i)/alpha ;
687  sec_membre.set(ligne)
688  += pari*i*i* sol_part_vr(zone, k, j, i)/alpha ;
689  pari = -pari ;
690  }
691  ligne++ ;
692 
693  systeme.set(ligne, colonne)
694  += sol_hom_un_eta.val_out_bound_jk(zone, j, k) ;
695  systeme.set(ligne, colonne+1)
696  += sol_hom_deux_eta.val_out_bound_jk(zone, j, k) ;
697  systeme.set(ligne, colonne+2)
698  += sol_hom_trois_eta.val_out_bound_jk(zone, j, k) ;
699  systeme.set(ligne, colonne+3)
700  += sol_hom_quatre_eta.val_out_bound_jk(zone, j, k) ;
701  sec_membre.set(ligne) -= sol_part_eta.val_out_bound_jk(zone, j, k) ;
702  ligne++ ;
703  // ... and their counterparts for V^r
704  systeme.set(ligne, colonne)
705  += sol_hom_un_vr.val_out_bound_jk(zone, j, k) ;
706  systeme.set(ligne, colonne+1)
707  += sol_hom_deux_vr.val_out_bound_jk(zone, j, k) ;
708  systeme.set(ligne, colonne+2)
709  += sol_hom_trois_vr.val_out_bound_jk(zone, j, k) ;
710  systeme.set(ligne, colonne+3)
711  += sol_hom_quatre_vr.val_out_bound_jk(zone, j, k) ;
712  sec_membre.set(ligne) -= sol_part_vr.val_out_bound_jk(zone, j, k) ;
713  ligne++ ;
714 
715  //derivative at 1
716  pari = 1 ;
717  for (int i=0; i<nr; i++) {
718  systeme.set(ligne, colonne)
719  += pari*i*i*sol_hom_un_eta(zone, k, j, i)/alpha ;
720  systeme.set(ligne, colonne+1)
721  += pari*i*i*sol_hom_deux_eta(zone, k, j, i)/alpha ;
722  systeme.set(ligne, colonne+2)
723  += pari*i*i*sol_hom_trois_eta(zone, k, j, i)/alpha ;
724  systeme.set(ligne, colonne+3)
725  += pari*i*i*sol_hom_quatre_eta(zone, k, j, i)/alpha ;
726  sec_membre.set(ligne)
727  -= pari*i*i* sol_part_eta(zone, k, j, i)/alpha ;
728  pari = pari ;
729  }
730  ligne++ ;
731  // ... and their couterparts for V^r
732  pari = 1 ;
733  for (int i=0; i<nr; i++) {
734  systeme.set(ligne, colonne)
735  += pari*i*i*sol_hom_un_vr(zone, k, j, i)/alpha ;
736  systeme.set(ligne, colonne+1)
737  += pari*i*i*sol_hom_deux_vr(zone, k, j, i)/alpha ;
738  systeme.set(ligne, colonne+2)
739  += pari*i*i*sol_hom_trois_vr(zone, k, j, i)/alpha ;
740  systeme.set(ligne, colonne+3)
741  += pari*i*i*sol_hom_quatre_vr(zone, k, j, i)/alpha ;
742  sec_membre.set(ligne)
743  -= pari*i*i* sol_part_vr(zone, k, j, i)/alpha ;
744  pari = pari ;
745  }
746  colonne += 4 ;
747  }
748 
749  //Compactified external domain
750  nr = mg.get_nr(nzm1) ;
751 
752  alpha = mpaff->get_alpha()[nzm1] ;
753  ligne -= 3 ;
754  //value of (x-1)^(l+2) at -1 :
755  systeme.set(ligne, colonne)
756  -= sol_hom_deux_eta.val_in_bound_jk(nzm1, j, k) ;
757  systeme.set(ligne, colonne+1)
758  -= sol_hom_quatre_eta.val_in_bound_jk(nzm1, j, k) ;
759  sec_membre.set(ligne) += sol_part_eta.val_in_bound_jk(nzm1, j, k) ;
760  //... and of its counterpart for V^r
761  systeme.set(ligne+1, colonne)
762  -= sol_hom_deux_vr.val_in_bound_jk(nzm1, j, k) ;
763  systeme.set(ligne+1, colonne+1)
764  -= sol_hom_quatre_vr.val_in_bound_jk(nzm1, j, k) ;
765  sec_membre.set(ligne+1) += sol_part_vr.val_in_bound_jk(nzm1, j, k) ;
766 
767  ligne += 2 ;
768  //derivative of (x-1)^(l+2) at -1 :
769  pari = 1 ;
770  for (int i=0; i<nr; i++) {
771  systeme.set(ligne, colonne)
772  -= 4*alpha*pari*i*i*sol_hom_deux_eta(nzm1, k, j, i) ;
773  systeme.set(ligne, colonne+1)
774  -= 4*alpha*pari*i*i*sol_hom_quatre_eta(nzm1, k, j, i) ;
775  sec_membre.set(ligne)
776  += 4*alpha*pari*i*i* sol_part_eta(nzm1, k, j, i) ;
777  pari = -pari ;
778  }
779  ligne++ ;
780  // ... and their counterparts for V^r
781  pari = 1 ;
782  for (int i=0; i<nr; i++) {
783  systeme.set(ligne, colonne)
784  -= 4*alpha*pari*i*i*sol_hom_deux_vr(nzm1, k, j, i) ;
785  systeme.set(ligne, colonne+1)
786  -= 4*alpha*pari*i*i*sol_hom_quatre_vr(nzm1, k, j, i) ;
787  sec_membre.set(ligne)
788  += 4*alpha*pari*i*i* sol_part_vr(nzm1, k, j, i) ;
789  pari = -pari ;
790  }
791 
792  // Solution of the system giving the coefficients for the homogeneous
793  // solutions
794  //-------------------------------------------------------------------
795  systeme.set_lu() ;
796  Tbl facteurs(systeme.inverse(sec_membre)) ;
797  int conte = 0 ;
798 
799  // everything is put to the right place, the same combination of hom.
800  // solutions (with some l or -(l+1) factors) must be used for V^r
801  //-------------------------------------------------------------------
802  nr = mg.get_nr(0) ; //nucleus
803  for (int i=0 ; i<nr ; i++) {
804  cf_eta.set(0, k, j, i) = 0.;
805  cf_vr.set(0, k, j, i) = 0.;
806  }
807 
808  for (int zone=1 ; zone<nzm1 ; zone++) { //shells
809  nr = mg.get_nr(zone) ;
810  for (int i=0 ; i<nr ; i++) {
811  cf_eta.set(zone, k, j, i) =
812  sol_part_eta(zone, k, j, i)
813  +facteurs(conte)*sol_hom_un_eta(zone, k, j, i)
814  +facteurs(conte+1)*sol_hom_deux_eta(zone, k, j, i)
815  +facteurs(conte+2)*sol_hom_trois_eta(zone, k, j, i)
816  +facteurs(conte+3)*sol_hom_quatre_eta(zone, k, j, i) ;
817  cf_vr.set(zone, k, j, i) = sol_part_vr(zone, k, j, i)
818  +facteurs(conte)*sol_hom_un_vr(zone, k, j, i)
819  +facteurs(conte+1)*sol_hom_deux_vr(zone, k, j, i)
820  +facteurs(conte+2)*sol_hom_trois_vr(zone, k, j, i)
821  +facteurs(conte+3)*sol_hom_quatre_vr(zone, k, j, i) ;
822  }
823  conte+=4 ;
824  }
825  nr = mg.get_nr(nz-1) ; //compactified external domain
826  for (int i=0 ; i<nr ; i++) {
827  cf_eta.set(nzm1, k, j, i) = sol_part_eta(nzm1, k, j, i)
828  +facteurs(conte)*sol_hom_deux_eta(nzm1, k, j, i)
829  +facteurs(conte+1)*sol_hom_quatre_eta(nzm1, k, j, i) ;
830  cf_vr.set(nzm1, k, j, i) = sol_part_vr(nzm1, k, j, i)
831  +facteurs(conte)*sol_hom_deux_vr(nzm1, k, j, i)
832  +facteurs(conte+1)*sol_hom_quatre_vr(nzm1, k, j, i) ;
833 
834  }
835  } // End of nullite_plm
836  } //End of loop on theta
837  vr.set_spectral_va().ylm_i() ;
838  vr += vrl0 ;
839  het.set_spectral_va().ylm_i() ;
840 
841 
842 
843  Scalar pipo(*mpaff);
844  pipo.annule_hard();
845  pipo.std_spectral_base();
846  pipo.set_dzpuis(3);
847  Param_elliptic param_mu(mu());
848 
849 
850 
851 
852  resu.set_vr_eta_mu(vr, het, mu().sol_elliptic_boundary(param_mu, (*bound_mu), dir_mu , neum_mu)) ;
853 
854  return ;
855 
856 }
857 }
const Base_val & get_spectral_base() const
Returns the spectral bases of the Valeur va.
Definition: scalar.h:1328
void poisson_boundary2(double lam, Vector &resu, Scalar boundvr, Scalar boundeta, Scalar boundmu, double dir_vr, double neum_vr, double dir_eta, double neum_eta, double dir_mu, double neum_mu) const
Alternative to previous poisson_boundary method for vectors ; this uses method 6 for vectorial solvin...
virtual const Matrice & get_matrice() const
Returns the matrix associated with the operator.
Definition: diff_x2dsdx2.C:98
Mtbl_cf * c_cf
Coefficients of the spectral expansion of the function.
Definition: valeur.h:312
Class for the elementary differential operator (see the base class Diff ).
Definition: diff.h:172
const double * get_alpha() const
Returns the pointer on the array alpha.
Definition: map_af.C:607
void ylm_i()
Inverse of ylm()
Definition: valeur_ylm_i.C:134
int get_np(int l) const
Returns the number of points in the azimuthal direction ( ) in domain no. l.
Definition: grilles.h:479
void set_etat_cf_qcq()
Sets the logical state to ETATQCQ (ordinary state) for values in the configuration space (Mtbl_cf c_c...
Definition: valeur.C:715
void give_quant_numbers(int, int, int, int &, int &, int &) const
Computes the various quantum numbers and 1d radial base.
void set_lu() const
Calculate the LU-representation, assuming the band-storage has been done.
Definition: matrice.C:395
Lorene prototypes.
Definition: app_hor.h:67
Tbl & set(int l)
Read/write of the Tbl containing the coefficients in a given domain.
Definition: mtbl_cf.h:304
Tbl inverse(const Tbl &sec_membre) const
Solves the linear system represented by the matrix.
Definition: matrice.C:427
void ylm()
Computes the coefficients of *this.
Definition: valeur_ylm.C:141
const Mg3d * get_mg() const
Gives the Mg3d on which the mapping is defined.
Definition: map.h:783
double & set(int i)
Read/write of a particular element (index i) (1D case)
Definition: tbl.h:301
virtual const Matrice & get_matrice() const
Returns the matrix associated with the operator.
Definition: diff_dsdx.C:97
Tensor field of valence 0 (or component of a tensorial field).
Definition: scalar.h:393
virtual void std_spectral_base()
Sets the spectral bases of the Valeur va to the standard ones for a scalar field. ...
Definition: scalar.C:790
const Base_vect * triad
Vectorial basis (triad) with respect to which the tensor components are defined.
Definition: tensor.h:309
Class for the elementary differential operator (see the base class Diff ).
Definition: diff.h:129
int get_etat() const
Returns the logical state ETATNONDEF (undefined), ETATZERO (null) or ETATQCQ (ordinary).
Definition: scalar.h:560
virtual void set_etat_qcq()
Sets the logical state to ETATQCQ (ordinary state).
Definition: scalar.C:359
Tensor field of valence 1.
Definition: vector.h:188
void set_dzpuis(int)
Modifies the dzpuis flag.
Definition: scalar.C:814
double val_out_bound_jk(int l, int j, int k) const
Computes the angular coefficient of index j,k of the field represented by *this at by means of the s...
void annule_hard()
Sets the Scalar to zero in a hard way.
Definition: scalar.C:386
void set_etat_qcq()
Sets the logical state to ETATQCQ (ordinary state).
Definition: tbl.C:364
Class for the elementary differential operator Identity (see the base class Diff ).
Definition: diff.h:210
double val_in_bound_jk(int l, int j, int k) const
Computes the angular coefficient of index j,k of the field represented by *this at by means of the s...
virtual const Matrice & get_matrice() const
Returns the matrix associated with the operator.
Definition: diff_xdsdx2.C:100
Class for the elementary differential operator (see the base class Diff ).
Definition: diff.h:490
Class for the elementary differential operator division by (see the base class Diff )...
Definition: diff.h:369
virtual const Scalar & eta() const
Gives the field such that the angular components of the vector are written: .
Definition: vector_etamu.C:72
Matrix handling.
Definition: matrice.h:152
Base_val base
Bases on which the spectral expansion is performed.
Definition: valeur.h:315
void set_vr_eta_mu(const Scalar &vr_i, const Scalar &eta_i, const Scalar &mu_i)
Defines the components through potentials and (see members p_eta and p_mu ), as well as the compon...
Definition: vector_etamu.C:198
Scalar ** cmp
Array of size n_comp of pointers onto the components.
Definition: tensor.h:321
virtual const Matrice & get_matrice() const
Returns the matrix associated with the operator.
Definition: diff_dsdx2.C:94
double * t
The array of double.
Definition: tbl.h:176
virtual const Matrice & get_matrice() const
Returns the matrix associated with the operator.
Definition: diff_sx2.C:101
const double * get_beta() const
Returns the pointer on the array beta.
Definition: map_af.C:611
Scalar sol_elliptic_boundary(Param_elliptic &params, const Mtbl_cf &bound, double fact_dir, double fact_neu) const
Resolution of a general elliptic equation, putting zero at infinity and with inner boundary condition...
Definition: scalar_pde.C:259
int get_nzone() const
Returns the number of domains.
Definition: grilles.h:465
virtual const Matrice & get_matrice() const
Returns the matrix associated with the operator.
Definition: diff_sxdsdx.C:100
Class for the elementary differential operator (see the base class Diff ).
Definition: diff.h:450
void annule_hard()
Sets the logical state to ETATQCQ (undefined state).
Definition: matrice.C:196
This class contains the parameters needed to call the general elliptic solver.
double & set(int j, int i)
Read/write of a particuliar element.
Definition: matrice.h:277
Spherical orthonormal vectorial bases (triads).
Definition: base_vect.h:308
void set_spectral_base(const Base_val &)
Sets the spectral bases of the Valeur va
Definition: scalar.C:803
int get_nr(int l) const
Returns the number of points in the radial direction ( ) in domain no. l.
Definition: grilles.h:469
Multi-domain grid.
Definition: grilles.h:279
Bases of the spectral expansions.
Definition: base_val.h:325
void annule_hard()
Sets the Mtbl_cf to zero in a hard way.
Definition: mtbl_cf.C:315
Affine radial mapping.
Definition: map.h:2048
Class for the elementary differential operator (see the base class Diff ).
Definition: diff.h:409
Coefficients storage for the multi-domain spectral method.
Definition: mtbl_cf.h:196
virtual const Scalar & mu() const
Gives the field such that the angular components of the vector are written: .
Definition: vector_etamu.C:107
void set_etat_qcq()
Sets the logical state to ETATQCQ (ordinary state).
Definition: matrice.C:178
Class for the elementary differential operator (see the base class Diff ).
Definition: diff.h:531
Basic array class.
Definition: tbl.h:164
int get_nt(int l) const
Returns the number of points in the co-latitude direction ( ) in domain no. l.
Definition: grilles.h:474
Valeur & set_spectral_va()
Returns va (read/write version)
Definition: scalar.h:610
int get_type_r(int l) const
Returns the type of sampling in the radial direction in domain no.
Definition: grilles.h:491
const Map *const mp
Mapping on which the numerical values at the grid points are defined.
Definition: tensor.h:301
void annule_hard()
Sets the Tbl to zero in a hard way.
Definition: tbl.C:375
virtual const Matrice & get_matrice() const
Returns the matrix associated with the operator.
Definition: diff_xdsdx.C:101
const Valeur & get_spectral_va() const
Returns va (read only version)
Definition: scalar.h:607
void set_poisson_vect_r(int zone, bool only_l_zero=false)
Sets the operator to in all domains, for ; and to in all domains otherwise.