LORENE
binhor_hh.C
1 /*
2  * Copyright (c) 2004-2005 Francois Limousin
3  * Jose-Luis Jaramillo
4  *
5  * This file is part of LORENE.
6  *
7  * LORENE is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * LORENE is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with LORENE; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20  *
21  */
22 
23 
24 
25 
26 /*
27  * $Id: binhor_hh.C,v 1.6 2016/12/05 16:17:46 j_novak Exp $
28  * $Log: binhor_hh.C,v $
29  * Revision 1.6 2016/12/05 16:17:46 j_novak
30  * Suppression of some global variables (file names, loch, ...) to prevent redefinitions
31  *
32  * Revision 1.5 2014/10/13 08:52:42 j_novak
33  * Lorene classes and functions now belong to the namespace Lorene.
34  *
35  * Revision 1.4 2014/10/06 15:13:01 j_novak
36  * Modified #include directives to use c++ syntax.
37  *
38  * Revision 1.3 2008/01/09 14:28:58 jl_jaramillo
39  * Improved the construction of hh1 and hh2
40  *
41  * Revision 1.2 2007/08/22 16:10:35 f_limousin
42  * Correction of many errors in binhor_hh.C
43  *
44  * Revision 1.1 2007/04/18 14:27:19 f_limousin
45  * First version
46  *
47  *
48  *
49  * $Header: /cvsroot/Lorene/C++/Source/Bin_hor/binhor_hh.C,v 1.6 2016/12/05 16:17:46 j_novak Exp $
50  *
51  */
52 
53 //standard
54 #include <cstdlib>
55 
56 // Lorene
57 #include "tensor.h"
58 #include "cmp.h"
59 #include "isol_hor.h"
60 #include "graphique.h"
61 #include "utilitaires.h"
62 
63 
64 
65 namespace Lorene {
67 
68  //========
69  // Grid 1
70  //========
71  int nz1 = hole1.mp.get_mg()->get_nzone() ;
72  int nz2 = hole2.mp.get_mg()->get_nzone() ;
73 
74  // General coordinate values
75  const Coord& xx_1 = hole1.mp.x ;
76  const Coord& yy_1 = hole1.mp.y ;
77  const Coord& zz_1 = hole1.mp.z ;
78 
79  //========
80  // Grid 2
81  //========
82 
83  // General coordinate values
84  const Coord& xx_2 = hole2.mp.x ;
85  const Coord& yy_2 = hole2.mp.y ;
86  const Coord& zz_2 = hole2.mp.z ;
87 
88  //===================================
89  // Definition of the relevant vectors
90  //===================================
91 
92  // Coordinate vector from hole 1 in the grid 1: nn1
93  //--------------------------------------------------
94  Vector rr1 (hole1.mp, CON, hole1.mp.get_bvect_cart()) ;
95  rr1.set(1) = xx_1 ;
96  rr1.set(2) = yy_1 ;
97  rr1.set(3) = zz_1 ;
98  rr1.std_spectral_base() ;
99 
100  // Norm r1
101  Scalar r1 (hole1.mp) ;
102  r1 = hole1.mp.r ;
103  r1.std_spectral_base() ;
104  Scalar temp1 (r1) ;
105  temp1.raccord(1) ;
106  r1.set_domain(0) = temp1.domain(0) ;
107 
108  // Unitary vector
109  Vector nn1 (rr1);
110  nn1 = nn1/r1 ;
111 
112  for (int i=0; i<hole1.mp.get_mg()->get_nr(nz1-1); i++)
113  for (int j=0; j<hole1.mp.get_mg()->get_nt(nz1-1); j++)
114  for (int k=0; k<hole1.mp.get_mg()->get_np(nz1-1); k++)
115  for (int ind=1; ind<=3; ind++){
116  nn1.set(ind).set_grid_point(nz1-1,k,j,i) = nn1(ind).val_grid_point(1,k,j,0) ;
117  }
118 
119 
120  //cout << "nn1(1)" << endl << nn1(1) << endl ;
121  //des_profile(nn1(1), 0., 20., M_PI/2, 0.);
122  //des_profile(nn1(2), 0., 20., M_PI/2, M_PI/2);
123  //des_profile(nn1(3), 0., 20., 0., 0.);
124  //cout << "nn1(1)" << endl << nn1(1) << endl ;
125  //cout << "nn1(2)" << endl << nn1(2) << endl ;
126  //cout << "nn1(3)" << endl << nn1(3) << endl ;
127  //cout << "r1" << endl << r1 << endl ;
128 
129 
130  // Coordinate vector from hole 2 in the grid 2: nn2_2
131  //-----------------------------------------------------
132  Vector rr2_2 (hole2.mp, CON, hole2.mp.get_bvect_cart()) ;
133  rr2_2.set(1) = xx_2 ;
134  rr2_2.set(2) = yy_2 ;
135  rr2_2.set(3) = zz_2 ;
136  rr2_2.std_spectral_base() ;
137 
138  // Norm r2_g2
139  Scalar r2_2 (hole2.mp) ;
140  r2_2 = hole2.mp.r ;
141  r2_2.std_spectral_base() ;
142  Scalar temp2 (r2_2) ;
143  temp2.raccord(1) ;
144  r2_2.set_domain(0) = temp2.domain(0) ;
145 
146  // Unitary vector
147  Vector nn2_2 (rr2_2);
148  nn2_2 = nn2_2/r2_2 ;
149 
150  for (int i=0; i<hole2.mp.get_mg()->get_nr(nz2-1); i++)
151  for (int j=0; j<hole2.mp.get_mg()->get_nt(nz2-1); j++)
152  for (int k=0; k<hole2.mp.get_mg()->get_np(nz2-1); k++)
153  for (int ind=1; ind<=3; ind++){
154  nn2_2.set(ind).set_grid_point(nz2-1,k,j,i) = nn2_2(ind).val_grid_point(1,k,j,0) ;
155  }
156 
157  Scalar unsr1 (hole1.mp) ;
158  unsr1 = 1./hole1.mp.r ;
159  unsr1.std_spectral_base() ;
160  unsr1.raccord(1) ;
161 
162  /*
163  Scalar unsr1_2 (hole2.mp) ;
164  unsr1_2.set_etat_qcq() ;
165  unsr1_2.import(unsr1) ;
166  unsr1_2.set_spectral_va().set_base(unsr1.get_spectral_va().get_base()) ;
167 
168  Scalar r2sr1_2 (hole2.mp) ;
169  r2sr1_2 = r2_2*unsr1_2 ;
170  r2sr1_2.set_outer_boundary(nz2-1, 1.) ;
171 
172  des_meridian(r2sr1_2, 0., 20., "r2sr1_2", 10) ;
173  arrete() ;
174  des_profile(r2sr1_2, 0., 20., M_PI/2, M_PI) ;
175  des_profile(r2sr1_2, 0., 20., M_PI/2, 0) ;
176 
177  Scalar r2sr1 (hole1.mp) ;
178  r2sr1.set_etat_qcq() ;
179  r2sr1.import(r2sr1_2) ;
180  r2sr1.set_spectral_va().set_base(r2sr1_2.get_spectral_va().get_base()) ;
181 
182  des_meridian(r2sr1, 0., 20., "r2sr1", 11) ;
183  arrete() ;
184  des_profile(r2sr1, 0., 20., M_PI/2, M_PI) ;
185  des_profile(r2sr1, 0., 20., M_PI/2, 0) ;
186 
187  */
188 
189 
190  // Coordinate vector from hole 2 in the grid 1: nn2
191  //-----------------------------------------------------
192  Vector nn2 (hole1.mp, CON, hole1.mp.get_bvect_cart()) ;
194  nn2.set_etat_qcq() ;
195  for (int i=1 ; i<=3 ; i++){
196  nn2.set(i).import(nn2_2(i)) ;
197  nn2.set(i).set_spectral_va().set_base(nn2_2(i).get_spectral_va().get_base()) ;
198  }
199 
200  // r2/r1
201  // -----
202  Scalar unsr2_2 (hole2.mp) ;
203  unsr2_2 = 1./hole2.mp.r ;
204  unsr2_2.std_spectral_base() ;
205  unsr2_2.raccord(1) ;
206 
207  Scalar unsr2 (hole1.mp) ;
208  unsr2.set_etat_qcq() ;
209  unsr2.import(unsr2_2) ;
210  unsr2.set_spectral_va().set_base(unsr2_2.get_spectral_va().get_base()) ;
211 
212  Scalar r1sr2 (unsr2*r1) ;
213  r1sr2.set_outer_boundary(nz1-1, 1.) ;
214 
215  Scalar r2sr1 (1./unsr2*unsr1) ;
216  r2sr1.set_outer_boundary(nz1-1, 1.) ;
217  /*
218  des_meridian(r2sr1, 0., 20., "r2sr1", 14) ;
219  arrete() ;
220  des_profile(r2sr1, 0., 20., M_PI/2, M_PI) ;
221  des_profile(r2sr1, 0., 20., M_PI/2, 0) ;
222 
223  des_meridian(1./r2sr1, 0., 20., "1./r2sr1", 12) ;
224  arrete() ;
225  des_profile(1./r2sr1, 0., 20., M_PI/2, M_PI) ;
226  des_profile(1./r2sr1, 0., 20., M_PI/2, 0) ;
227 
228  des_meridian(1./r1, 0., 20., "1./r1", 13) ;
229  arrete() ;
230  des_profile(1./r1, 0., 20., M_PI/2, M_PI) ;
231  des_profile(1./r1, 0., 20., M_PI/2, 0) ;
232 
233  des_meridian(1./(r1*r2sr1), 0., 20., "1./r1*r2sr1", 14) ;
234  arrete() ;
235  des_profile(1./(r1*r2sr1), 0., 20., M_PI/2, M_PI) ;
236  des_profile(1./(r1*r2sr1), 0., 20., M_PI/2, 0) ;
237  */
238 
239  // Coordinate vector from hole 1 to hole 2 in the grid 1: nn12
240  //----------------------------------------------------------------
241  // Warning! Valid only in the symmetric case (for the general case it would
242  // necessary to construct this whole function as a Bin_hor function
243  Vector rr12 (hole1.mp, CON, hole1.mp.get_bvect_cart()) ;
244  rr12.set(1) = hole1.mp.get_ori_x() - hole2.mp.get_ori_x() ;
245  rr12.set(2) = hole1.mp.get_ori_y() - hole2.mp.get_ori_y() ;
246  rr12.set(3) = hole1.mp.get_ori_z() - hole2.mp.get_ori_z() ;
247  rr12.std_spectral_base() ;
248 
249  //Norm r12
250  Scalar r12 (hole1.mp) ;
251  r12 = sqrt( rr12(1)*rr12(1) + rr12(2)*rr12(2) + rr12(3)*rr12(3)) ;
252  r12.std_spectral_base() ;
253 
254  // Unitary vector
255  Vector nn12 ( rr12 );
256  nn12 = nn12/ r12 ;
257 
258 
259  Scalar f_delta (hole1.mp) ;
260  Scalar f_delta_zec (hole1.mp) ;
261  Scalar f_1_1 (hole1.mp) ;
262  Scalar f_1_1_zec (hole1.mp) ;
263  Scalar f_1_12 (hole1.mp) ;
264  Scalar f_1_12_zec (hole1.mp) ;
265  Scalar f_12_12 (hole1.mp) ;
266  Scalar f_1_2 (hole1.mp) ;
267 
268  f_delta.set_etat_qcq() ;
269  f_delta_zec.set_etat_qcq() ;
270  f_1_1.set_etat_qcq() ;
271  f_1_1_zec.set_etat_qcq() ;
272  f_1_12.set_etat_qcq() ;
273  f_1_12_zec.set_etat_qcq() ;
274  f_12_12.set_etat_qcq() ;
275  f_1_2.set_etat_qcq() ;
276 
277  // Function exp(-(r-r_0)^2/sigma^2)
278  // --------------------------------
279 
280  double r0 = hole1.mp.val_r(nz1-2, 1, 0, 0) ;
281  double sigma = 1.*r0 ;
282 
283  Scalar rr (hole1.mp) ;
284  rr = hole1.mp.r ;
285 
286  Scalar fexp (hole1.mp) ;
287  fexp = exp( -(rr - r0)*(rr - r0)/sigma/sigma ) ;
288  for (int ii=0; ii<nz1-1; ii++)
289  fexp.set_domain(ii) = 1. ;
290  fexp.set_outer_boundary(nz1-1, 0) ;
291  fexp.std_spectral_base() ;
292 
293  // Conformal metric
294  //=================
295 
296  // tilde{gamma}- \delta = m_1*m_2* ( f_delta \delta_{ij}
297  // + f_1_1 nn1*nn1 + f_1_12 nn1*nn12
298  // + f_12_12 nn12*nn12
299  // + f_2_2 nn2*nn2 + f_2_12 nn2*nn12
300  // + f_1_2 nn1*nn2
301 
302  // f_delta
303  //--------
304  f_delta = -5.*r1/(8.*r12*r12*r12) - 15./(8.*r1*r12) +
305  5.*r1*r1*unsr2/(8.*r12*r12*r12) + 1./(r1+1./unsr2+r12)/(r1+1./unsr2+r12)*
306  (1 + r1/r12 + r12/r1 - r1sr2 - r1*r1sr2/r12 + r12*r12*unsr2/(2*r1)) +
307  1./(r1+1./unsr2+r12)*(-7./r1 + 2./r12) ;
308 
309  f_delta.annule_domain(nz1-1) ;
310 
311  f_delta_zec = - 15./(8.*r1*r12) + 1./(r1+1./unsr2+r12)/(r1+1./unsr2+r12)*
312  (1 + r1/r12 + r12/r1 - r1sr2 - r1*r1sr2/r12 + r12*r12*unsr2/(2*r1)) +
313  1./(r1+1./unsr2+r12)*(-7./r1 + 2./r12) ;
314  f_delta_zec += fexp*(-5.*r1/(8.*r12*r12*r12)+5.*r1*r1*unsr2/(8.*r12*r12*r12)) ;
315 
316  f_delta_zec.set_outer_boundary(nz1-1, 0.) ;
317  for (int i=0 ;i<nz1-1 ; i++){
318  f_delta_zec.annule_domain(i) ;
319  }
320 
321  f_delta = f_delta + f_delta_zec ;
322 
323  /*
324  des_meridian(f_delta, 0., 20., "f_delta", 10) ;
325  arrete() ;
326  des_profile(f_delta, 0., 20., M_PI/2, M_PI) ;
327  des_profile(f_delta, 0., 20., M_PI/2, 0) ;
328  des_profile(f_delta, 0., 20., 0, M_PI) ;
329  des_coupe_z (f_delta, 0., 2) ;
330  des_coupe_z (f_delta, 0., 3) ;
331  des_coupe_z (f_delta, 0., 4) ;
332  des_coupe_z (f_delta, 0., 5) ;
333  */
334 
335  // f_1_1
336  //------
337  f_1_1 = r1/(8.*r12*r12*r12) + 11./(8.*r1*r12) -
338  1./(8.*r1*unsr2*unsr2*r12*r12*r12) + 7./(r1+1./unsr2+r12)/(r1+1./unsr2+r12) +
339  7./r1/(r1+1./unsr2+r12) ;
340  f_1_1.annule_domain(nz1-1) ;
341 
342  f_1_1_zec = 11./(8.*r1*r12) + 7./(r1+1./unsr2+r12)/(r1+1./unsr2+r12) +
343  7./r1/(r1+1./unsr2+r12) ;
344  f_1_1_zec += fexp*(r1/(8.*r12*r12*r12)-1./(8.*r1*unsr2*unsr2*r12*r12*r12)) ;
345  f_1_1_zec.set_outer_boundary(nz1-1, 0.) ;
346 
347  for (int i=0 ; i<nz1-1 ; i++){
348  f_1_1_zec.annule_domain(i) ;
349  }
350 
351  f_1_1 = f_1_1 + f_1_1_zec ;
352 
353  /*
354  des_meridian(f_1_1, 0., 20., "f_1_1", 14) ;
355  arrete() ;
356  des_profile(f_1_1, 0., 20., M_PI/2, M_PI) ;
357  des_profile(f_1_1, 0., 20., M_PI/2, 0) ;
358  des_profile(f_1_1, 0., 20., 0, M_PI) ;
359  des_coupe_z (f_1_1, 0., 2) ;
360  des_coupe_z (f_1_1, 0., 3) ;
361  des_coupe_z (f_1_1, 0., 4) ;
362  des_coupe_z (f_1_1, 0., 5) ;
363  */
364 
365  // f_1_12
366  //------
367  f_1_12 = - 7./(2*r12*r12) + 8./(r1+1./unsr2+r12)/(r1+1./unsr2+r12) ;
368  f_1_12.annule_domain(nz1-1) ;
369 
370  f_1_12_zec = 8./(r1+1./unsr2+r12)/(r1+1./unsr2+r12) ;
371  f_1_12_zec += fexp*(- 7./(2*r12*r12)) ;
372  f_1_12_zec.set_outer_boundary(nz1-1, 0.) ;
373 
374  for (int i=0 ; i<nz1-1 ; i++){
375  f_1_12_zec.annule_domain(i) ;
376  }
377 
378  f_1_12 = f_1_12 + f_1_12_zec ;
379 
380  /*
381  des_meridian(f_1_12, 0., 40., "f_1_12", 15) ;
382  arrete() ;
383  des_profile(f_1_12, 0., 20., M_PI/2, M_PI) ;
384  des_profile(f_1_12, 0., 20., M_PI/2, 0) ;
385  des_profile(f_1_12, 0., 20., 0, M_PI) ;
386  des_coupe_z (f_1_12, 0., 2) ;
387  des_coupe_z (f_1_12, 0., 3) ;
388  des_coupe_z (f_1_12, 0., 4) ;
389  des_coupe_z (f_1_12, 0., 5) ;
390  */
391 
392  // f_12_12
393  //-------
394  f_12_12 = (-4./(r1+1./unsr2+r12)/(r1+1./unsr2+r12) - // facteur 2 ???????
395  4./r12/(r1+1./unsr2+r12)) ;
396  f_12_12.set_outer_boundary(nz1-1, 0.) ;
397 
398  /*
399  des_meridian(f_12_12, 0., 40., "f_12_12", 15) ;
400  arrete() ;
401  des_profile(f_12_12, 0., 20., M_PI/2, M_PI) ;
402  des_profile(f_12_12, 0., 20., M_PI/2, 0) ;
403  des_profile(f_12_12, 0., 20., 0, M_PI) ;
404  des_coupe_z (f_12_12, 0., 2) ;
405  des_coupe_z (f_12_12, 0., 3) ;
406  des_coupe_z (f_12_12, 0., 4) ;
407  des_coupe_z (f_12_12, 0., 5) ;
408  */
409 
410  // f_1_2
411  //-------
412  f_1_2 = 11./(r1+1./unsr2+r12)/(r1+1./unsr2+r12); // facteur 2 ???????
413  f_1_2.set_outer_boundary(nz1-1, 0.) ;
414 
415  /*
416  des_meridian(f_1_2, 0., 40., "f_1_1", 15) ;
417  arrete() ;
418  des_profile(f_1_2, 0., 20., M_PI/2, M_PI) ;
419  des_profile(f_1_2, 0., 20., M_PI/2, 0) ;
420  des_profile(f_1_2, 0., 20., 0, M_PI) ;
421  des_coupe_z (f_1_2, 0., 2) ;
422  des_coupe_z (f_1_2, 0., 3) ;
423  des_coupe_z (f_1_2, 0., 4) ;
424  des_coupe_z (f_1_2, 0., 5) ;
425  */
426 
427  // First part of the correction metric (needed to be complemented by the (1 <-> 2) term
428 
429  Sym_tensor hh_temp(hole1.mp, CON, hole1.mp.get_bvect_cart()) ;
430 
431  for (int i=1 ; i<= 3 ; i++){
432  for (int j=i ; j<= 3 ; j++){
433  hh_temp.set(i,j) = f_delta * hole1.ff.con()(i,j) + f_1_1 * nn1(i)*nn1(j)
434  + f_1_12 * 0.5 *(nn1(i) * nn12(j) + nn1(j) * nn12(i))
435  + f_12_12 * nn12(i)*nn12(j)
436  + f_1_2 * 0.5*(nn1(i)*nn2(j) + nn1(j)*nn2(i) ) ;
437  }
438  }
439  /*
440  des_meridian(hh_temp, 0., 20., "hh_temp", 25) ;
441  arrete() ;
442  for (int i=1 ; i<= 3 ; i++)
443  for (int j=i ; j<= 3 ; j++){
444  des_profile(hh_temp(i,j), 0., 20., M_PI/2, M_PI) ;
445  des_profile(hh_temp(i,j), 0., 20., M_PI/2, 0) ;
446  des_profile(hh_temp(i,j), 0., 20., 0, M_PI) ;
447  des_coupe_z (hh_temp(i,j), 0., 5) ;
448  }
449  */
450 
451  return hh_temp ;
452 
453 }
454 
455 
457 
458 
459  //========
460  // Grid 1
461  //========
462  int nz1 = hole1.mp.get_mg()->get_nzone() ;
463  int nz2 = hole2.mp.get_mg()->get_nzone() ;
464 
465  // General coordinate values
466  const Coord& xx_1 = hole1.mp.x ;
467  const Coord& yy_1 = hole1.mp.y ;
468  const Coord& zz_1 = hole1.mp.z ;
469 
470  //========
471  // Grid 2
472  //========
473 
474  // General coordinate values
475  const Coord& xx_2 = hole2.mp.x ;
476  const Coord& yy_2 = hole2.mp.y ;
477  const Coord& zz_2 = hole2.mp.z ;
478 
479 
480  //===================================
481  // Definition of the relevant vectors
482  //===================================
483 
484  // Coordinate vector from hole 2 in the grid 2: nn2
485  //--------------------------------------------------
486  Vector rr2 (hole2.mp, CON, hole2.mp.get_bvect_cart()) ;
487  rr2.set(1) = xx_2 ;
488  rr2.set(2) = yy_2 ;
489  rr2.set(3) = zz_2 ;
490  rr2.std_spectral_base() ;
491 
492  // Norm r2
493  Scalar r2 (hole2.mp) ;
494  r2 = hole1.mp.r ;
495  r2.std_spectral_base() ;
496  Scalar temp2 (r2) ;
497  temp2.raccord(1) ;
498  r2.set_domain(0) = temp2.domain(0) ;
499 
500  // Unitary vector
501  Vector nn2 (rr2);
502  nn2 = nn2/r2 ;
503 
504  for (int i=0; i<hole2.mp.get_mg()->get_nr(nz2-1); i++)
505  for (int j=0; j<hole2.mp.get_mg()->get_nt(nz2-1); j++)
506  for (int k=0; k<hole2.mp.get_mg()->get_np(nz2-1); k++)
507  for (int ind=1; ind<=3; ind++){
508  nn2.set(ind).set_grid_point(nz2-1,k,j,i) = nn2(ind).val_grid_point(1,k,j,0) ;
509  }
510 
511  // Coordinate vector from hole 1 in the grid 1: nn1_1
512  //-----------------------------------------------------
513  Vector rr1_1 (hole1.mp, CON, hole1.mp.get_bvect_cart()) ;
514  rr1_1.set(1) = xx_1 ;
515  rr1_1.set(2) = yy_1 ;
516  rr1_1.set(3) = zz_1 ;
517  rr1_1.std_spectral_base() ;
518 
519  // Norm r1_g1
520  Scalar r1_1 (hole1.mp) ;
521  r1_1 = hole1.mp.r ;
522  r1_1.std_spectral_base() ;
523  Scalar temp1 (r1_1) ;
524  temp1.raccord(1) ;
525  r1_1.set_domain(0) = temp1.domain(0) ;
526 
527  // Unitary vector
528  Vector nn1_1 (rr1_1);
529  nn1_1 = nn1_1/r1_1 ;
530 
531  for (int i=0; i<hole1.mp.get_mg()->get_nr(nz1-1); i++)
532  for (int j=0; j<hole1.mp.get_mg()->get_nt(nz1-1); j++)
533  for (int k=0; k<hole1.mp.get_mg()->get_np(nz1-1); k++)
534  for (int ind=1; ind<=3; ind++){
535  nn1_1.set(ind).set_grid_point(nz1-1,k,j,i) = nn1_1(ind).val_grid_point(1,k,j,0) ;
536  }
537 
538  Scalar unsr2 (hole2.mp) ;
539  unsr2 = 1./hole2.mp.r ;
540  unsr2.std_spectral_base() ;
541  unsr2.raccord(1) ;
542 
543  // Coordinate vector from hole 1 in the grid 2: nn1
544  //-----------------------------------------------------
545  Vector nn1 (hole2.mp, CON, hole2.mp.get_bvect_cart()) ;
547  nn1.set_etat_qcq() ;
548  for (int i=1 ; i<=3 ; i++){
549  nn1.set(i).import(nn1_1(i)) ;
550  nn1.set(i).set_spectral_va().set_base(nn1_1(i).get_spectral_va().get_base()) ;
551  }
552 
553  // r1/r2
554  // -----
555  Scalar unsr1_1 (hole1.mp) ;
556  unsr1_1 = 1./hole1.mp.r ;
557  unsr1_1.std_spectral_base() ;
558  unsr1_1.raccord(1) ;
559 
560  Scalar unsr1 (hole2.mp) ;
561  unsr1.set_etat_qcq() ;
562  unsr1.import(unsr1_1) ;
563  unsr1.set_spectral_va().set_base(unsr1_1.get_spectral_va().get_base()) ;
564 
565  Scalar r2sr1 (unsr1*r2) ;
566  r2sr1.set_outer_boundary(nz2-1, 1.) ;
567 
568  Scalar r1sr2 (1./unsr1*unsr2) ;
569  r1sr2.set_outer_boundary(nz2-1, 1.) ;
570 
571  // Coordinate vector from hole 2 to hole 1 in the grid 2: nn21
572  //----------------------------------------------------------------
573  // Warning! Valid only in the symmetric case (for the general case it would
574  // necessary to construct this whole function as a Bin_hor function
575  Vector rr21 (hole2.mp, CON, hole2.mp.get_bvect_cart()) ;
576  rr21.set(1) = hole2.mp.get_ori_x() - hole1.mp.get_ori_x() ;
577  rr21.set(2) = hole2.mp.get_ori_y() - hole1.mp.get_ori_y() ;
578  rr21.set(3) = hole2.mp.get_ori_z() - hole1.mp.get_ori_z() ;
579  rr21.std_spectral_base() ;
580 
581  //Norm r21
582  Scalar r21 (hole2.mp) ;
583  r21 = sqrt( rr21(1)*rr21(1) + rr21(2)*rr21(2) + rr21(3)*rr21(3)) ;
584  r21.std_spectral_base() ;
585 
586  // Unitary vector
587  Vector nn21 ( rr21 );
588  nn21 = nn21/ r21 ;
589 
590 
591  Scalar f_delta (hole2.mp) ;
592  Scalar f_delta_zec (hole2.mp) ;
593  Scalar f_2_2 (hole2.mp) ;
594  Scalar f_2_2_zec (hole2.mp) ;
595  Scalar f_2_21 (hole2.mp) ;
596  Scalar f_2_21_zec (hole2.mp) ;
597  Scalar f_21_21 (hole2.mp) ;
598  Scalar f_2_1 (hole2.mp) ;
599 
600  f_delta.set_etat_qcq() ;
601  f_delta_zec.set_etat_qcq() ;
602  f_2_2.set_etat_qcq() ;
603  f_2_2_zec.set_etat_qcq() ;
604  f_2_21.set_etat_qcq() ;
605  f_2_21_zec.set_etat_qcq() ;
606  f_21_21.set_etat_qcq() ;
607  f_2_1.set_etat_qcq() ;
608 
609  // Function exp(-(r-r_0)^2/sigma^2)
610  // --------------------------------
611 
612  double r0 = hole2.mp.val_r(nz2-2, 1, 0, 0) ;
613  double sigma = 1.*r0 ;
614 
615  Scalar rr (hole2.mp) ;
616  rr = hole2.mp.r ;
617 
618  Scalar fexp (hole2.mp) ;
619  fexp = exp( -(rr - r0)*(rr - r0)/sigma/sigma ) ;
620  for (int ii=0; ii<nz2-1; ii++)
621  fexp.set_domain(ii) = 1. ;
622  fexp.set_outer_boundary(nz2-1, 0) ;
623  fexp.std_spectral_base() ;
624 
625  // Conformal metric
626  //=================
627 
628  // tilde{gamma}- \delta = m_1*m_2* ( f_delta \delta_{ij}
629  // + f_2_2 nn2*nn2 + f_2_21 nn2*nn21
630  // + f_21_21 nn21*nn21
631  // + f_1_1 nn1*nn1 + f_1_21 nn1*nn21
632  // + f_2_1 nn2*nn1
633 
634  // f_delta
635  //--------
636  f_delta = -5.*r2/(8.*r21*r21*r21) - 15./(8.*r2*r21) +
637  5.*r2*r2*unsr1/(8.*r21*r21*r21) + 1./(r2+1./unsr1+r21)/(r2+1./unsr1+r21)*
638  (1 + r2/r21 + r21/r2 - r2sr1 - r2*r2sr1/r21 + r21*r21*unsr1/(2*r2)) +
639  1./(r2+1./unsr1+r21)*(-7./r2 + 2./r21) ;
640 
641  f_delta.annule_domain(nz2-1) ;
642 
643  f_delta_zec = - 15./(8.*r2*r21) + 1./(r2+1./unsr1+r21)/(r2+1./unsr1+r21)*
644  (1 + r2/r21 + r21/r2 - r2sr1 - r2*r2sr1/r21 + r21*r21*unsr1/(2*r2)) +
645  1./(r2+1./unsr1+r21)*(-7./r2 + 2./r21) ;
646  f_delta_zec += fexp*(-5.*r2/(8.*r21*r21*r21)+5.*r2*r2*unsr1/(8.*r21*r21*r21)) ;
647 
648  f_delta_zec.set_outer_boundary(nz2-1, 0.) ;
649  for (int i=0 ;i<nz2-1 ; i++){
650  f_delta_zec.annule_domain(i) ;
651  }
652 
653  f_delta = f_delta + f_delta_zec ;
654 
655  /*
656  des_meridian(f_delta, 0., 20., "f_delta", 10) ;
657  arrete() ;
658  des_profile(f_delta, 0., 20., M_PI/2, M_PI) ;
659  des_profile(f_delta, 0., 20., M_PI/2, 0) ;
660  des_profile(f_delta, 0., 20., 0, M_PI) ;
661  des_coupe_z (f_delta, 0., 2) ;
662  des_coupe_z (f_delta, 0., 3) ;
663  des_coupe_z (f_delta, 0., 4) ;
664  des_coupe_z (f_delta, 0., 5) ;
665  */
666 
667  // f_2_2
668  //------
669  f_2_2 = r2/(8.*r21*r21*r21) + 11./(8.*r2*r21) -
670  1./(8.*r2*unsr1*unsr1*r21*r21*r21) + 7./(r2+1./unsr1+r21)/(r2+1./unsr1+r21) +
671  7./r2/(r2+1./unsr1+r21) ;
672  f_2_2.annule_domain(nz2-1) ;
673 
674  f_2_2_zec = 11./(8.*r2*r21) + 7./(r2+1./unsr1+r21)/(r2+1./unsr1+r21) +
675  7./r2/(r2+1./unsr1+r21) ;
676  f_2_2_zec += fexp*(r2/(8.*r21*r21*r21)-1./(8.*r2*unsr1*unsr1*r21*r21*r21)) ;
677  f_2_2_zec.set_outer_boundary(nz2-1, 0.) ;
678 
679  for (int i=0 ; i<nz2-1 ; i++){
680  f_2_2_zec.annule_domain(i) ;
681  }
682 
683  f_2_2 = f_2_2 + f_2_2_zec ;
684 
685  /*
686  des_meridian(f_2_2, 0., 20., "f_2_2", 14) ;
687  arrete() ;
688  des_profile(f_2_2, 0., 20., M_PI/2, M_PI) ;
689  des_profile(f_2_2, 0., 20., M_PI/2, 0) ;
690  des_profile(f_2_2, 0., 20., 0, M_PI) ;
691  des_coupe_z (f_2_2, 0., 2) ;
692  des_coupe_z (f_2_2, 0., 3) ;
693  des_coupe_z (f_2_2, 0., 4) ;
694  des_coupe_z (f_2_2, 0., 5) ;
695  */
696 
697  // f_2_21
698  //------
699  f_2_21 = - 7./(2*r21*r21) + 8./(r2+1./unsr1+r21)/(r2+1./unsr1+r21) ;
700  f_2_21.annule_domain(nz2-1) ;
701 
702  f_2_21_zec = 8./(r2+1./unsr1+r21)/(r2+1./unsr1+r21) ;
703  f_2_21_zec += fexp*(- 7./(2*r21*r21)) ;
704  f_2_21_zec.set_outer_boundary(nz2-1, 0.) ;
705 
706  for (int i=0 ; i<nz2-1 ; i++){
707  f_2_21_zec.annule_domain(i) ;
708  }
709 
710  f_2_21 = f_2_21 + f_2_21_zec ;
711 
712  /*
713  des_meridian(f_2_21, 0., 40., "f_2_21", 15) ;
714  arrete() ;
715  des_profile(f_2_21, 0., 20., M_PI/2, M_PI) ;
716  des_profile(f_2_21, 0., 20., M_PI/2, 0) ;
717  des_profile(f_2_21, 0., 20., 0, M_PI) ;
718  des_coupe_z (f_2_21, 0., 2) ;
719  des_coupe_z (f_2_21, 0., 3) ;
720  des_coupe_z (f_2_21, 0., 4) ;
721  des_coupe_z (f_2_21, 0., 5) ;
722  */
723 
724  // f_21_21
725  //-------
726  f_21_21 = (-4./(r2+1./unsr1+r21)/(r2+1./unsr1+r21) - // facteur 2 ???????
727  4./r21/(r2+1./unsr1+r21)) ;
728  f_21_21.set_outer_boundary(nz2-1, 0.) ;
729 
730  /*
731  des_meridian(f_21_21, 0., 40., "f_21_21", 15) ;
732  arrete() ;
733  des_profile(f_21_21, 0., 20., M_PI/2, M_PI) ;
734  des_profile(f_21_21, 0., 20., M_PI/2, 0) ;
735  des_profile(f_21_21, 0., 20., 0, M_PI) ;
736  des_coupe_z (f_21_21, 0., 2) ;
737  des_coupe_z (f_21_21, 0., 3) ;
738  des_coupe_z (f_21_21, 0., 4) ;
739  des_coupe_z (f_21_21, 0., 5) ;
740  */
741 
742  // f_2_1
743  //-------
744  f_2_1 = 11./(r2+1./unsr1+r21)/(r2+1./unsr1+r21); // facteur 2 ???????
745  f_2_1.set_outer_boundary(nz2-1, 0.) ;
746 
747  /*
748  des_meridian(f_2_1, 0., 40., "f_2_1", 15) ;
749  arrete() ;
750  des_profile(f_2_1, 0., 20., M_PI/2, M_PI) ;
751  des_profile(f_2_1, 0., 20., M_PI/2, 0) ;
752  des_profile(f_2_1, 0., 20., 0, M_PI) ;
753  des_coupe_z (f_2_1, 0., 2) ;
754  des_coupe_z (f_2_1, 0., 3) ;
755  des_coupe_z (f_2_1, 0., 4) ;
756  des_coupe_z (f_2_1, 0., 5) ;
757  */
758 
759  // First part of the correction metric (needed to be complemented by the (1 <-> 2) term
760 
761  Sym_tensor hh_temp(hole2.mp, CON, hole2.mp.get_bvect_cart()) ;
762 
763  for (int i=1 ; i<= 3 ; i++){
764  for (int j=i ; j<= 3 ; j++){
765  hh_temp.set(i,j) = f_delta * hole2.ff.con()(i,j) + f_2_2 * nn2(i)*nn2(j)
766  - f_2_21 * 0.5 *(nn2(i) * nn21(j) + nn2(j) * nn21(i))
767  + f_21_21 * nn21(i)*nn21(j)
768  + f_2_1 * 0.5*(nn2(i)*nn1(j) + nn2(j)*nn1(i) ) ;
769  }
770  }
771  /*
772  des_meridian(hh_temp, 0., 20., "hh_temp", 25) ;
773  arrete() ;
774  for (int i=1 ; i<= 3 ; i++)
775  for (int j=i ; j<= 3 ; j++){
776  des_profile(hh_temp(i,j), 0., 20., M_PI/2, M_PI) ;
777  des_profile(hh_temp(i,j), 0., 20., M_PI/2, 0) ;
778  des_profile(hh_temp(i,j), 0., 20., 0, M_PI) ;
779  des_coupe_z (hh_temp(i,j), 0., 5) ;
780  }
781  */
782 
783  return hh_temp ;
784 
785 
786 
787 }
788 
790 
791  Sym_tensor hh1 ( hh_Samaya_hole1() ) ;
792  Sym_tensor hh2 ( hh_Samaya_hole2() ) ;
793 
794  // Definition of the surface
795  // -------------------------
796 
797  Cmp surface_un (hole1.mp) ;
798  surface_un = pow(hole1.mp.r, 2.)-pow(hole1.get_radius(), 2.) ;
799  surface_un.annule(hole1.mp.get_mg()->get_nzone()-1) ;
800  surface_un.std_base_scal() ;
801 
802  Cmp surface_deux (hole2.mp) ;
803  surface_deux = pow(hole2.mp.r, 2.)-pow(hole2.get_radius(), 2.) ;
804  surface_deux.annule(hole1.mp.get_mg()->get_nzone()-1) ;
805  surface_deux.std_base_scal() ;
806  /*
807  double ta = 12 ;
808  for (int i=1 ; i<= 3 ; i++)
809  for (int j=i ; j<= 3 ; j++){
810  Cmp dessin_un (hh1(i,j)) ;
811  dessin_un.annule(0) ;
812 
813  Cmp dessin_deux (hh2(i,j)) ;
814  dessin_deux.annule(0) ;
815 
816  des_coupe_bin_z (dessin_un, dessin_deux, 0,
817  -ta, ta, -ta, ta, "hh(1,1)", &surface_un, &surface_deux,
818  false, 15, 300, 300) ;
819  }
820  */
821 
822  // Importation
823  // ----------------
824 
825  Sym_tensor hh2_1 (hole1.mp, CON, hole1.mp.get_bvect_cart()) ;
826  hh2_1.set_etat_qcq() ;
827  Sym_tensor hh1_2 (hole2.mp, CON, hole2.mp.get_bvect_cart()) ;
828  hh1_2.set_etat_qcq() ;
829 
830  /*
831  Scalar temp (hh1(1,1)) ;
832  temp.annule_domain(0) ;
833  des_profile(temp, 0., 4., M_PI/2, M_PI) ;
834  des_profile(temp, 0., 4., M_PI/2, 0) ;
835  des_profile(temp, 0., 4., 0, M_PI) ;
836  des_coupe_z (temp, 0., 5) ;
837  temp.raccord(1) ;
838  des_profile(temp, 0., 4., M_PI/2, M_PI) ;
839  des_profile(temp, 0., 4., M_PI/2, 0) ;
840  des_profile(temp, 0., 4., 0, M_PI) ;
841  des_coupe_z (temp, 0., 5) ;
842  */
843 
844  /*
845  for (int i=1 ; i<= 3 ; i++)
846  for (int j=i ; j<= 3 ; j++){
847  des_profile(hh1(i,j), 0., 20., M_PI/2, M_PI) ;
848  des_profile(hh1(i,j), 0., 20., M_PI/2, 0) ;
849  des_profile(hh1(i,j), 0., 20., 0, M_PI) ;
850  des_coupe_z (hh1(i,j), 0., 5) ;
851  }
852  */
853  for (int i=1 ; i<=3 ; i++)
854  for (int j=i ; j<=3 ; j++){
855  hh1.set(i,j).raccord(1) ;
856  hh2.set(i,j).raccord(1) ;
857  }
858  /*
859  for (int i=1 ; i<= 3 ; i++)
860  for (int j=i ; j<= 3 ; j++){
861  des_profile(hh1(i,j), 0., 20., M_PI/2, M_PI) ;
862  des_profile(hh1(i,j), 0., 20., M_PI/2, 0) ;
863  des_profile(hh1(i,j), 0., 20., 0, M_PI) ;
864  des_coupe_z (hh1(i,j), 0., 5) ;
865  }
866  */
867 
869  for (int i=1 ; i<=3 ; i++){
870  for (int j=i ; j<=3 ; j++){
871  hh2_1.set(i,j).import(hh2(i,j)) ;
872  hh2_1.set(i,j).set_spectral_va().set_base(hh2(i,j).get_spectral_va().get_base()) ;
873  }
874  }
876 
878  for (int i=1 ; i<=3 ; i++){
879  for (int j=i ; j<=3 ; j++){
880  hh1_2.set(i,j).import(hh1(i,j)) ;
881  hh1_2.set(i,j).set_spectral_va().set_base(hh1(i,j).get_spectral_va().get_base()) ;
882  }
883  }
885 
886  double m1, m2 ;
887  m1 = pow(hole1.area_hor()/(16.*M_PI) + hole1.ang_mom_hor()/hole1.radius, 0.5) ;
888  m2 = pow(hole2.area_hor()/(16.*M_PI) + hole2.ang_mom_hor()/hole2.radius, 0.5) ;
889 
890 
891  hh1 = hh1 + hh2_1 ;
892  hh2 = hh2 + hh1_2 ;
893 
894  cout << hole1.mp.r << endl ;
895  cout << hole1.mp.phi << endl ;
896  cout << hole1.mp.tet << endl ;
897 
898 
899  //des_meridian(hh1, 0., 20., "hh1 cart", 20) ;
900  for (int i=1 ; i<= 3 ; i++)
901  for (int j=i ; j<= 3 ; j++){
902  // des_profile(hh1(i,j), 0., 20., M_PI/2, M_PI) ;
903  //des_profile(hh1(i,j), 0., 20., M_PI/2, 0) ;
904  //des_profile(hh1(i,j), 0., 20., 0, M_PI) ;
905  des_coupe_z (hh1(i,j), 0., 5) ;
906  }
907 
910 
911  hole1.hh = m1*m2* hh1 ;
912  hole2.hh = m1*m2* hh2 ;
913 
914  Metric tgam_1 ( hole1.ff.con() + hh1 ) ;
915  Metric tgam_2 ( hole2.ff.con() + hh2 ) ;
916 
917  hole1.tgam = tgam_1 ;
918  hole2.tgam = tgam_2 ;
919 
920 
921  des_meridian(hh1, 0., 20., "hh1", 0) ;
922 
923 
924 }
925 }
void annule_domain(int l)
Sets the Tensor to zero in a given domain.
Definition: tensor.C:675
Metric for tensor calculation.
Definition: metric.h:90
virtual void set_etat_qcq()
Sets the logical state of all components to ETATQCQ (ordinary state).
Definition: tensor.C:490
void des_coupe_z(const Scalar &uu, double z0, int nzdes, const char *title=0x0, const Scalar *defsurf=0x0, double zoom=1.2, bool draw_bound=true, int ncour=15, int nx=100, int ny=100)
Draws isocontour lines of a Scalar in a plane Z=constant.
Component of a tensorial field *** DEPRECATED : use class Scalar instead ***.
Definition: cmp.h:446
Cmp exp(const Cmp &)
Exponential.
Definition: cmp_math.C:273
Metric tgam
3 metric tilde
Definition: isol_hor.h:977
int get_np(int l) const
Returns the number of points in the azimuthal direction ( ) in domain no. l.
Definition: grilles.h:479
Cmp sqrt(const Cmp &)
Square root.
Definition: cmp_math.C:223
double area_hor() const
Area of the horizon.
Definition: single_param.C:91
void annule(int l)
Sets the Cmp to zero in a given domain.
Definition: cmp.C:351
const Tbl & domain(int l) const
Read-only of the value in a given domain.
Definition: scalar.h:631
double get_ori_y() const
Returns the y coordinate of the origin.
Definition: map.h:788
const Base_vect_spher & get_bvect_spher() const
Returns the orthonormal vectorial basis associated with the coordinates of the mapping.
Definition: map.h:801
Lorene prototypes.
Definition: app_hor.h:67
const Mg3d * get_mg() const
Gives the Mg3d on which the mapping is defined.
Definition: map.h:783
Tensor field of valence 0 (or component of a tensorial field).
Definition: scalar.h:393
double get_ori_x() const
Returns the x coordinate of the origin.
Definition: map.h:786
virtual double val_r(int l, double xi, double theta, double pphi) const
Returns the value of the radial coordinate r for a given in a given domain.
Definition: map_af_radius.C:99
Single_hor hole1
Black hole one.
Definition: isol_hor.h:1342
virtual void std_spectral_base()
Sets the spectral bases of the Valeur va to the standard ones for a scalar field. ...
Definition: scalar.C:790
virtual void change_triad(const Base_vect &)
Sets a new vectorial basis (triad) of decomposition and modifies the components accordingly.
virtual void set_etat_qcq()
Sets the logical state to ETATQCQ (ordinary state).
Definition: scalar.C:359
void set(const Map *mp, Mtbl *(*construct)(const Map *))
Semi-constructor from a mapping and a method.
Definition: coord.C:137
Tensor field of valence 1.
Definition: vector.h:188
void set_base(const Base_val &)
Sets the bases for spectral expansions (member base )
Definition: valeur.C:813
Tbl & set_domain(int l)
Read/write of the value in a given domain.
Definition: scalar.h:621
Sym_tensor hh_Samaya_hole2()
Calculation of the hole2 part of the Post-Newtonian correction to .
Definition: binhor_hh.C:456
Coord tet
coordinate centered on the grid
Definition: map.h:737
void raccord(int n)
Performs the matching of the nucleus with respect to the first shell.
Coord phi
coordinate centered on the grid
Definition: map.h:738
virtual const Sym_tensor & con() const
Read-only access to the contravariant representation.
Definition: metric_flat.C:156
Sym_tensor hh
Deviation metric.
Definition: isol_hor.h:983
void set_outer_boundary(int l, double x)
Sets the value of the Scalar at the outer boundary of a given domain.
Definition: scalar_manip.C:321
Sym_tensor hh_Samaya_hole1()
Calculation of the hole1 part of the Post-Newtonian correction to .
Definition: binhor_hh.C:66
double get_radius() const
Returns the radius of the horizon.
Definition: isol_hor.h:1046
int get_nzone() const
Returns the number of domains.
Definition: grilles.h:465
Cmp pow(const Cmp &, int)
Power .
Definition: cmp_math.C:351
Active physical coordinates and mapping derivatives.
Definition: coord.h:90
Single_hor hole2
Black hole two.
Definition: isol_hor.h:1343
void std_base_scal()
Sets the spectral bases of the Valeur va to the standard ones for a scalar.
Definition: cmp.C:647
void import(const Scalar &ci)
Assignment to another Scalar defined on a different mapping.
Definition: scalar_import.C:71
int get_nr(int l) const
Returns the number of points in the radial direction ( ) in domain no. l.
Definition: grilles.h:469
void des_meridian(const Scalar &uu, double r_min, double r_max, const char *nomy, int ngraph, const char *device=0x0, bool closeit=false, bool draw_bound=true)
Draws 5 profiles of a scalar field along various radial axes in two meridional planes and ...
double & set_grid_point(int l, int k, int j, int i)
Setting the value of the field at a given grid point.
Definition: scalar.h:690
const Base_vect_cart & get_bvect_cart() const
Returns the Cartesian basis associated with the coordinates (x,y,z) of the mapping, i.e.
Definition: map.h:809
Map_af & mp
Affine mapping.
Definition: isol_hor.h:900
Scalar & set(const Itbl &ind)
Returns the value of a component (read/write version).
Definition: tensor.C:663
Coord y
y coordinate centered on the grid
Definition: map.h:745
void set_hh_Samaya()
Calculation of the Post-Newtonian correction to .
Definition: binhor_hh.C:789
Coord x
x coordinate centered on the grid
Definition: map.h:744
virtual void change_triad(const Base_vect &new_triad)
Sets a new vectorial basis (triad) of decomposition and modifies the components accordingly.
double get_ori_z() const
Returns the z coordinate of the origin.
Definition: map.h:790
int get_nt(int l) const
Returns the number of points in the co-latitude direction ( ) in domain no. l.
Definition: grilles.h:474
Valeur & set_spectral_va()
Returns va (read/write version)
Definition: scalar.h:610
Scalar & set(int)
Read/write access to a component.
Definition: vector.C:302
double ang_mom_hor() const
Angular momentum (modulo)
Definition: single_param.C:110
double radius
Radius of the horizon in LORENE&#39;s units.
Definition: isol_hor.h:906
Metric_flat ff
3 metric flat
Definition: isol_hor.h:980
Coord z
z coordinate centered on the grid
Definition: map.h:746
Class intended to describe valence-2 symmetric tensors.
Definition: sym_tensor.h:226
const Valeur & get_spectral_va() const
Returns va (read only version)
Definition: scalar.h:607
Coord r
r coordinate centered on the grid
Definition: map.h:736
const Base_val & get_base() const
Return the bases for spectral expansions (member base )
Definition: valeur.h:490