LORENE
scalar_raccord_externe.C
1 /*
2  * Copyright (c) 2003 Eric Gourgoulhon & Jerome Novak
3  *
4  * Copyright (c) 2001 Philippe Grandclement (for preceding Cmp version)
5  *
6  *
7  * This file is part of LORENE.
8  *
9  * LORENE is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * LORENE is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with LORENE; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22  *
23  */
24 
25 
26 
27 
28 /*
29  * $Id: scalar_raccord_externe.C,v 1.5 2016/12/05 16:18:19 j_novak Exp $
30  * $Log: scalar_raccord_externe.C,v $
31  * Revision 1.5 2016/12/05 16:18:19 j_novak
32  * Suppression of some global variables (file names, loch, ...) to prevent redefinitions
33  *
34  * Revision 1.4 2014/10/13 08:53:47 j_novak
35  * Lorene classes and functions now belong to the namespace Lorene.
36  *
37  * Revision 1.3 2014/10/06 15:16:16 j_novak
38  * Modified #include directives to use c++ syntax.
39  *
40  * Revision 1.2 2003/09/25 09:22:33 j_novak
41  * Added a #include<math.h>
42  *
43  * Revision 1.1 2003/09/25 08:58:10 e_gourgoulhon
44  * First version.
45  *
46  *
47  * $Header: /cvsroot/Lorene/C++/Source/Tensor/Scalar/scalar_raccord_externe.C,v 1.5 2016/12/05 16:18:19 j_novak Exp $
48  *
49  */
50 
51 
52 
53 //standard
54 #include <cstdlib>
55 #include <cmath>
56 
57 // LORENE
58 #include "matrice.h"
59 #include "tensor.h"
60 #include "proto.h"
61 
62 namespace Lorene {
63 int cnp (int n, int p) ;
64 
65 // Fait le raccord dans la zec ...
66 // Suppose (pour le moment, le meme nbre de points sur les angles ...)
67 // et que la zone precedente est une coquille
68 
69 void Scalar::raccord_externe(int power, int nbre, int lmax) {
70 
71  va.coef() ;
72  va.ylm() ;
73 
74  Base_val base_devel (va.base) ;
75  int base_r, m_quant, l_quant ;
76 
77  // Confort :
78  int zone = mp->get_mg()->get_nzone()-2 ;
79  int nt = mp->get_mg()->get_nt(zone) ;
80  int np = mp->get_mg()->get_np(zone) ;
81  int nr = mp->get_mg()->get_nr(zone) ;
82 
83  // Le mapping doit etre affine :
84  const Map_af* map = dynamic_cast<const Map_af*>(mp) ;
85  if (map == 0x0) {
86  cout << "Le mapping doit etre affine" << endl ;
87  abort() ;
88  }
89 
90  // Mappinhg en r
91  double alpha = map->get_alpha()[zone] ;
92  double beta = map->get_beta()[zone] ;
93 
94  // Mapping en 1/r
95  double new_alpha = -alpha/(beta*beta-alpha*alpha) ;
96  double new_beta = beta/(beta*beta-alpha*alpha) ;
97 
98  // Mapping dans la zec :
99  double alpha_zec = map->get_alpha()[zone+1] ;
100 
101  // Maintenant on construit les matrices de passage :
102  // Celle de ksi a T
103  Matrice tksi (nbre, nbre) ;
104  tksi.set_etat_qcq() ;
105 
106  // Premier polynome
107  tksi.set(0, 0) = sqrt(double(2)) ;
108  for (int i=1 ; i<nbre ; i++)
109  tksi.set(0, i) = 0 ;
110 
111  //Second polynome
112  tksi.set(1, 0) = 0 ;
113  tksi.set(1, 1) = sqrt(double(2)) ;
114  for (int i=2 ; i<nbre ; i++)
115  tksi.set(1, i) = 0 ;
116 
117  // On recurre :
118  for (int lig=2 ; lig<nbre ; lig++) {
119  tksi.set(lig, 0) = -tksi(lig-2, 0) ;
120  for (int col=1 ; col<nbre ; col++)
121  tksi.set(lig, col) = 2*tksi(lig-1, col-1)-tksi(lig-2, col) ;
122  }
123 
124  // Celle de u/new_alpha a ksi :
125  Matrice ksiu (nbre, nbre) ;
126  ksiu.set_etat_qcq() ;
127 
128  for (int lig=0 ; lig<nbre ; lig++) {
129  for (int col=0 ; col<=lig ; col++)
130  ksiu.set(lig, col) = cnp(lig, col)*
131  pow(-new_beta/new_alpha, lig-col) ;
132  for (int col = lig+1 ; col<nbre ; col++)
133  ksiu.set(lig, col) = 0 ;
134  }
135 
136  // La matrice totale :
137  Matrice tu (nbre, nbre) ;
138  tu.set_etat_qcq() ;
139  double somme ;
140  for (int lig=0 ; lig<nbre ; lig++)
141  for (int col=0 ; col<nbre ; col++) {
142  somme = 0 ;
143  for (int m=0 ; m<nbre ; m++)
144  somme += tksi(lig, m)*ksiu(m, col) ;
145  tu.set(lig, col) = somme ;
146  }
147 
148  // On calcul les coefficients de u^n dans la zec
149  Tbl coef_u (nbre+lmax, nr) ;
150  coef_u.set_etat_qcq() ;
151  int* dege = new int [3] ;
152  dege[0] = 1 ; dege[1] = 1 ; dege[2] = nr ;
153  double* ti = new double [nr] ;
154 
155  for (int puiss=0 ; puiss<nbre+lmax ; puiss++) {
156  for (int i=0 ; i<nr ; i++)
157  ti[i] = pow(-cos(M_PI*i/(nr-1))-1, puiss) ;
158  cfrcheb (dege, dege, ti, dege, ti) ;
159  for (int i=0 ; i<nr ; i++)
160  coef_u.set(puiss, i) = ti[i] ;
161  }
162 
163  // Avant d entrer dans la boucle :
164  dege[2] = nbre ;
165  double *coloc = new double[nbre] ;
166  double *auxi = new double [1] ;
167 
168  Tbl coef_zec (np+2, nt, nr) ;
169  coef_zec.annule_hard() ;
170 
171  // Boucle sur les harmoniques :
172 
173  for (int k=0 ; k<np+2 ; k++)
174  for (int j=0 ; j<nt ; j++)
175  if (nullite_plm (j, nt, k, np, base_devel)==1) {
176  donne_lm (zone+2, zone+1, j, k, base_devel, m_quant,
177  l_quant, base_r) ;
178  if (l_quant <= lmax) {
179 
180  // On bosse :
181  // On recupere les valeus aux points de colocation en 1/r :
182  double ksi, air ;
183  for (int i=0 ; i<nbre ; i++) {
184  ksi = -cos(M_PI*i/(nbre-1)) ;
185  air = 1./(new_alpha*ksi+new_beta) ;
186  ksi = (air-beta)/alpha ;
187  for (int m=0 ; m<nr ; m++)
188  ti[m] = (*va.c_cf)(zone, k, j, m) ;
189  som_r_cheb (ti, nr, 1, 1, ksi, auxi) ;
190  coloc[i] = auxi[0]/
191  pow (-new_alpha*cos(M_PI*i/(nbre-1))+new_beta, power+l_quant);
192  }
193 
194  cfrcheb (dege, dege, coloc, dege, coloc) ;
195 
196  Tbl expansion (nbre) ;
197  expansion.set_etat_qcq() ;
198  for (int i=0 ; i<nbre ; i++) {
199  somme = 0 ;
200  for (int m=0 ; m<nbre ; m++)
201  somme += coloc[m]*tu(m, i) ;
202  expansion.set(i) = somme ;
203  }
204 
205  for (int i=0 ; i<nr ; i++) {
206  somme = 0 ;
207  for (int m=0 ; m<nbre ; m++)
208  somme += coef_u(m+l_quant, i)*expansion(m)*
209  pow(alpha_zec, m+l_quant)/
210  pow(new_alpha, m) ;
211  coef_zec.set(k, j, i) = somme ;
212  }
213  }
214  }
215 
216  va.set_etat_cf_qcq() ;
217  va.c_cf->set_etat_qcq() ;
218  va.c_cf->t[zone+1]->set_etat_qcq() ;
219 
220  for (int k=0 ; k<np+2 ; k++)
221  for (int j=0 ; j<nt ; j++)
222  for (int i=0 ; i<nr ; i++)
223  va.c_cf->set(zone+1, k, j, i) = coef_zec(k, j, i) ;
224 
225  set_dzpuis(power) ;
226  va.ylm_i() ;
227 
228  delete[] auxi ;
229  delete [] dege ;
230  delete [] ti ;
231  delete [] coloc ;
232 }
233 }
Mtbl_cf * c_cf
Coefficients of the spectral expansion of the function.
Definition: valeur.h:312
const double * get_alpha() const
Returns the pointer on the array alpha.
Definition: map_af.C:607
void ylm_i()
Inverse of ylm()
Definition: valeur_ylm_i.C:134
int get_np(int l) const
Returns the number of points in the azimuthal direction ( ) in domain no. l.
Definition: grilles.h:479
void set_etat_cf_qcq()
Sets the logical state to ETATQCQ (ordinary state) for values in the configuration space (Mtbl_cf c_c...
Definition: valeur.C:715
void coef() const
Computes the coeffcients of *this.
Definition: valeur_coef.C:151
Lorene prototypes.
Definition: app_hor.h:67
Tbl & set(int l)
Read/write of the Tbl containing the coefficients in a given domain.
Definition: mtbl_cf.h:304
void ylm()
Computes the coefficients of *this.
Definition: valeur_ylm.C:141
const Mg3d * get_mg() const
Gives the Mg3d on which the mapping is defined.
Definition: map.h:783
double & set(int i)
Read/write of a particular element (index i) (1D case)
Definition: tbl.h:301
friend Scalar sqrt(const Scalar &)
Square root.
Definition: scalar_math.C:266
void set_dzpuis(int)
Modifies the dzpuis flag.
Definition: scalar.C:814
void set_etat_qcq()
Sets the logical state to ETATQCQ (ordinary state).
Definition: tbl.C:364
friend Scalar pow(const Scalar &, int)
Power .
Definition: scalar_math.C:454
friend Scalar cos(const Scalar &)
Cosine.
Definition: scalar_math.C:107
Matrix handling.
Definition: matrice.h:152
Base_val base
Bases on which the spectral expansion is performed.
Definition: valeur.h:315
const double * get_beta() const
Returns the pointer on the array beta.
Definition: map_af.C:611
int get_nzone() const
Returns the number of domains.
Definition: grilles.h:465
Valeur va
The numerical value of the Scalar.
Definition: scalar.h:411
void set_etat_qcq()
Sets the logical state to ETATQCQ (ordinary state).
Definition: mtbl_cf.C:303
double & set(int j, int i)
Read/write of a particuliar element.
Definition: matrice.h:277
int get_nr(int l) const
Returns the number of points in the radial direction ( ) in domain no. l.
Definition: grilles.h:469
Bases of the spectral expansions.
Definition: base_val.h:325
Affine radial mapping.
Definition: map.h:2048
void set_etat_qcq()
Sets the logical state to ETATQCQ (ordinary state).
Definition: matrice.C:178
Basic array class.
Definition: tbl.h:164
int get_nt(int l) const
Returns the number of points in the co-latitude direction ( ) in domain no. l.
Definition: grilles.h:474
const Map *const mp
Mapping on which the numerical values at the grid points are defined.
Definition: tensor.h:301
void annule_hard()
Sets the Tbl to zero in a hard way.
Definition: tbl.C:375
void raccord_externe(int puis, int nbre, int lmax)
Matching of the external domain with the outermost shell.
Tbl ** t
Array (size nzone ) of pointers on the Tbl &#39;s which contain the spectral coefficients in each domain...
Definition: mtbl_cf.h:215