LORENE
regularisation.C
1 /*
2  * Copyright (c) 2005 Francois Limousin
3  * Jose Luis Jaramillo
4  *
5  * This file is part of LORENE.
6  *
7  * LORENE is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * LORENE is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with LORENE; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20  *
21  */
22 
23 
24 
25 
26 /*
27  * $Id: regularisation.C,v 1.13 2016/12/05 16:17:56 j_novak Exp $
28  * $Log: regularisation.C,v $
29  * Revision 1.13 2016/12/05 16:17:56 j_novak
30  * Suppression of some global variables (file names, loch, ...) to prevent redefinitions
31  *
32  * Revision 1.12 2014/10/13 08:53:01 j_novak
33  * Lorene classes and functions now belong to the namespace Lorene.
34  *
35  * Revision 1.11 2014/10/06 15:13:11 j_novak
36  * Modified #include directives to use c++ syntax.
37  *
38  * Revision 1.10 2008/08/19 06:42:00 j_novak
39  * Minor modifications to avoid warnings with gcc 4.3. Most of them concern
40  * cast-type operations, and constant strings that must be defined as const char*
41  *
42  * Revision 1.9 2005/09/13 18:33:17 f_limousin
43  * New function vv_bound_cart_bin(double) for computing binaries with
44  * berlin condition for the shift vector.
45  * Suppress all the symy and asymy in the importations.
46  *
47  * Revision 1.8 2005/09/12 12:33:54 f_limousin
48  * Compilation Warning - Change of convention for the angular velocity
49  * Add Berlin boundary condition in the case of binary horizons.
50  *
51  * Revision 1.7 2005/05/12 14:48:07 f_limousin
52  * New boundary condition for the lapse : boundary_nn_lapl().
53  *
54  * Revision 1.6 2005/04/03 19:48:22 f_limousin
55  * Implementation of set_psi(psi_in). And minor changes to avoid warnings.
56  *
57  * Revision 1.5 2005/03/24 16:50:28 f_limousin
58  * Add parameters solve_shift and solve_psi in par_isol.d and in function
59  * init_dat(...). Implement Isolhor::kerr_perturb().
60  *
61  * Revision 1.4 2005/03/22 13:25:36 f_limousin
62  * Small changes. The angular velocity and A^{ij} are computed
63  * with a differnet sign.
64  *
65  * Revision 1.3 2005/03/10 10:19:42 f_limousin
66  * Add the regularisation of the shift in the case of a single black hole
67  * and lapse zero on the horizon.
68  *
69  * Revision 1.2 2005/03/06 17:05:33 f_limousin
70  * Change parameter omega to om, in order not to have warnings.
71  *
72  * Revision 1.1 2005/02/22 14:51:53 f_limousin
73  * First version
74  *
75  *
76  * $Header: /cvsroot/Lorene/C++/Source/Isol_hor/regularisation.C,v 1.13 2016/12/05 16:17:56 j_novak Exp $
77  *
78  */
79 
80 
81 //Standard
82 #include <cstdlib>
83 #include <cmath>
84 
85 //Lorene
86 #include "isol_hor.h"
87 #include "nbr_spx.h"
88 #include "tensor.h"
89 
90 namespace Lorene {
91 double Isol_hor::regularisation (const Vector& shift_auto_temp,
92  const Vector& shift_comp_temp, double om) {
93 
94  Vector shift_auto(shift_auto_temp) ;
95  shift_auto.change_triad(shift_auto.get_mp().get_bvect_cart()) ;
96  Vector shift_comp(shift_comp_temp) ;
97  shift_comp.change_triad(shift_comp.get_mp().get_bvect_cart()) ;
98  Vector shift_old (shift_auto) ;
99 
100  double orientation = shift_auto.get_mp().get_rot_phi() ;
101  assert ((orientation==0) || (orientation == M_PI)) ;
102  double orientation_autre = shift_comp.get_mp().get_rot_phi() ;
103  assert ((orientation_autre==0) || (orientation_autre == M_PI)) ;
104 
105  int alignes = (orientation == orientation_autre) ? 1 : -1 ;
106 
107  int np = shift_auto.get_mp().get_mg()->get_np(1) ;
108  int nt = shift_auto.get_mp().get_mg()->get_nt(1) ;
109  int nr = shift_auto.get_mp().get_mg()->get_nr(1) ;
110 
111  // Minimisation of the derivative of the shift on r
112  Vector shift_tot (shift_auto.get_mp(), CON, *shift_auto.get_triad()) ;
113  shift_tot.set(1).import(alignes*shift_comp(1)) ;
114  shift_tot.set(2).import(alignes*shift_comp(2)) ;
115  shift_tot.set(3).import(shift_comp(3)) ;
116 
117  shift_tot = shift_tot + shift_auto ;
118 
119  double indic = (orientation == 0) ? 1 : -1 ;
120 
121  Vector tbi (shift_tot) ;
122  if (om != 0) {
123  for (int i=1 ; i<=3 ; i++) {
124  tbi.set(i).set_spectral_va().coef_i() ;
125  tbi.set(i).set_spectral_va().set_etat_c_qcq() ;
126  }
127 
128  tbi.set(1) = *shift_tot(1).get_spectral_va().c - indic *om * shift_tot.get_mp().ya ;
129  tbi.set(2) = *shift_tot(2).get_spectral_va().c + indic *om * shift_tot.get_mp().xa ;
130  tbi.std_spectral_base() ;
131  tbi.set(1).annule_domain(nz-1) ;
132  tbi.set(2).annule_domain(nz-1) ;
133  }
134 
135  Vector derive_r (shift_auto.get_mp(), CON, *shift_auto.get_triad()) ;
136  for (int i=1 ; i<=3 ; i++)
137  derive_r.set(i) = tbi(i).dsdr() ;
138 
139 
140  // We substract a function in order that Kij is regular
141 
142  Valeur val_hor (shift_auto.get_mp().get_mg()) ;
143  Valeur fonction_radiale (shift_auto.get_mp().get_mg()) ;
144  Scalar enleve (shift_auto.get_mp()) ;
145 
146  double erreur = 0 ;
147  for (int comp=1 ; comp<=3 ; comp++) {
148  val_hor.annule_hard() ;
149  for (int k=0 ; k<np ; k++)
150  for (int j=0 ; j<nt ; j++)
151  for (int i=0 ; i<nr ; i++)
152  val_hor.set(1, k, j, i) = derive_r(comp).
153  val_grid_point(1, k, j, 0) ;
154 
155  double r_0 = shift_auto.get_mp().val_r (1, -1, 0, 0) ;
156  double r_1 = shift_auto.get_mp().val_r (1, 1, 0, 0) ;
157 
158  fonction_radiale = pow(r_1-shift_auto.get_mp().r, 3.)*
159  (shift_auto.get_mp().r-r_0)/pow(r_1-r_0, 3.) ;
160  fonction_radiale.annule(0) ;
161  fonction_radiale.annule(2, nz-1) ;
162 
163  enleve = fonction_radiale * val_hor ;
164  enleve.set_spectral_va().set_base (shift_auto(comp).
165  get_spectral_va().get_base()) ;
166 
167  if (norme(enleve)(1) != 0)
168  shift_auto.set(comp) = shift_auto(comp) - enleve ;
169  if (norme(shift_auto(comp))(1) > 1e-5) {
170  Tbl diff (diffrelmax (shift_auto(comp), shift_old(comp))) ;
171  if (erreur < diff(1))
172  erreur = diff(1) ;
173  }
174  }
175 
176  shift_auto.change_triad(shift_auto.get_mp().get_bvect_spher()) ;
177 
178  double ttime = the_time[jtime] ;
179  beta_auto_evol.update(shift_auto, jtime, ttime) ;
180 
181  return erreur ;
182 }
183 
184 
185 // Regularisation if only one black hole :
187 
188  Vector shift (beta()) ;
189 
190  shift.change_triad(mp.get_bvect_cart()) ;
191  // Vector B (without boost and rotation)
192  Vector tbi (shift) ;
193 
194  for (int i=1 ; i<=3 ; i++) {
195  tbi.set(i).set_spectral_va().coef_i() ;
196  tbi.set(i).set_spectral_va().set_etat_c_qcq() ;
197  }
198 
199  for (int i=1 ; i<=3 ; i++)
200  shift(i).get_spectral_va().coef_i() ;
201 
202  tbi.set(1) = *shift(1).get_spectral_va().c - omega*mp.y - boost_x ;
203  tbi.set(2) = *shift(2).get_spectral_va().c + omega*mp.x ;
204  if (shift(3).get_etat() != ETATZERO)
205  tbi.set(3) = *shift(3).get_spectral_va().c - boost_z ;
206  else
207  tbi.set(3) = 0. ;
208  tbi.std_spectral_base() ;
209 
210  // We only need values at the horizon
211  tbi.set(1).annule_domain(mp.get_mg()->get_nzone()-1) ;
212  tbi.set(2).annule_domain(mp.get_mg()->get_nzone()-1) ;
213 
214  Vector derive_r (mp, CON, mp.get_bvect_cart()) ;
215  derive_r.set_etat_qcq() ;
216  for (int i=1 ; i<=3 ; i++)
217  derive_r.set(i) = tbi(i).dsdr() ;
218 
219  Valeur val_hor (mp.get_mg()) ;
220  Valeur fonction_radiale (mp.get_mg()) ;
221  Scalar enleve (mp) ;
222 
223  double erreur = 0 ;
224  int np = mp.get_mg()->get_np(1) ;
225  int nt = mp.get_mg()->get_nt(1) ;
226  int nr = mp.get_mg()->get_nr(1) ;
227 
228  double r_0 = mp.val_r(1, -1, 0, 0) ;
229  double r_1 = mp.val_r(1, 1, 0, 0) ;
230 
231  for (int comp=1 ; comp<=3 ; comp++) {
232  val_hor.annule_hard() ;
233  for (int k=0 ; k<np ; k++)
234  for (int j=0 ; j<nt ; j++)
235  for (int i=0 ; i<nr ; i++)
236  val_hor.set(1, k, j, i) = derive_r(comp).val_grid_point(1, k, j, 0) ;
237 
238  fonction_radiale = pow(r_1-mp.r, 3.)* (mp.r-r_0)/pow(r_1-r_0, 3.) ;
239  fonction_radiale.annule(0) ;
240  fonction_radiale.annule(2, nz-1) ;
241 
242  enleve = fonction_radiale*val_hor ;
243  enleve.set_spectral_va().base = shift(comp).get_spectral_va().base ;
244 
245  Scalar copie (shift(comp)) ;
246  shift.set(comp) = shift(comp)-enleve ;
247  shift.std_spectral_base() ;
248 
249  assert (shift(comp).check_dzpuis(0)) ;
250 
251  // Intensity of the correction (if nonzero)
252  Tbl norm (norme(shift(comp))) ;
253  if (norm(1) > 1e-5) {
254  Tbl diff (diffrelmax (copie, shift(comp))) ;
255  if (erreur<diff(1))
256  erreur = diff(1) ;
257  }
258  }
259 
260  shift.change_triad(mp.get_bvect_spher()) ;
261  beta_evol.update(shift, jtime, the_time[jtime]) ;
262 
263  return erreur ;
264 }
265 }
virtual const Vector & beta() const
shift vector at the current time step (jtime )
void annule_domain(int l)
Sets the Tensor to zero in a given domain.
Definition: tensor.C:675
virtual void set_etat_qcq()
Sets the logical state of all components to ETATQCQ (ordinary state).
Definition: tensor.C:490
double omega
Angular velocity in LORENE&#39;s units.
Definition: isol_hor.h:269
Evolution_std< Vector > beta_auto_evol
Values at successive time steps of the shift function .
Definition: isol_hor.h:301
int get_np(int l) const
Returns the number of points in the azimuthal direction ( ) in domain no. l.
Definition: grilles.h:479
void annule(int l)
Sets the Cmp to zero in a given domain.
Definition: cmp.C:351
const Base_vect_spher & get_bvect_spher() const
Returns the orthonormal vectorial basis associated with the coordinates of the mapping.
Definition: map.h:795
Lorene prototypes.
Definition: app_hor.h:67
const Mg3d * get_mg() const
Gives the Mg3d on which the mapping is defined.
Definition: map.h:777
Tensor field of valence 0 (or component of a tensorial field).
Definition: scalar.h:393
void coef_i() const
Computes the physical value of *this.
virtual double val_r(int l, double xi, double theta, double pphi) const
Returns the value of the radial coordinate r for a given in a given domain.
Definition: map_af_radius.C:99
int jtime
Time step index of the latest slice.
Definition: time_slice.h:193
Values and coefficients of a (real-value) function.
Definition: valeur.h:297
virtual void change_triad(const Base_vect &)
Sets a new vectorial basis (triad) of decomposition and modifies the components accordingly.
double get_rot_phi() const
Returns the angle between the x –axis and X –axis.
Definition: map.h:787
Tensor field of valence 1.
Definition: vector.h:188
int nz
Number of zones.
Definition: isol_hor.h:263
double regularisation(const Vector &shift_auto, const Vector &shift_comp, double ang_vel)
Corrects shift_auto in such a way that the total is equal to zero in the horizon, which should ensure the regularity of .
virtual void std_spectral_base()
Sets the standard spectal bases of decomposition for each component.
Definition: vector.C:322
void annule_hard()
Sets the Scalar to zero in a hard way.
Definition: scalar.C:386
Map_af & mp
Affine mapping.
Definition: isol_hor.h:260
Tbl norme(const Cmp &)
Sums of the absolute values of all the values of the Cmp in each domain.
Definition: cmp_math.C:484
const Base_vect * get_triad() const
Returns the vectorial basis (triad) on which the components are defined.
Definition: tensor.h:879
double boost_x
Boost velocity in x-direction.
Definition: isol_hor.h:272
Mtbl * c
Values of the function at the points of the multi-grid.
Definition: valeur.h:309
int get_nzone() const
Returns the number of domains.
Definition: grilles.h:465
Cmp pow(const Cmp &, int)
Power .
Definition: cmp_math.C:351
Evolution_std< double > the_time
Time label of each slice.
Definition: time_slice.h:196
void import(const Scalar &ci)
Assignment to another Scalar defined on a different mapping.
Definition: scalar_import.C:71
int get_nr(int l) const
Returns the number of points in the radial direction ( ) in domain no. l.
Definition: grilles.h:469
const Base_vect_cart & get_bvect_cart() const
Returns the Cartesian basis associated with the coordinates (x,y,z) of the mapping, i.e.
Definition: map.h:803
Coord y
y coordinate centered on the grid
Definition: map.h:739
Coord x
x coordinate centered on the grid
Definition: map.h:738
void set_etat_c_qcq()
Sets the logical state to ETATQCQ (ordinary state) for values in the configuration space (Mtbl c )...
Definition: valeur.C:704
Basic array class.
Definition: tbl.h:164
int get_nt(int l) const
Returns the number of points in the co-latitude direction ( ) in domain no. l.
Definition: grilles.h:474
Valeur & set_spectral_va()
Returns va (read/write version)
Definition: scalar.h:610
Scalar & set(int)
Read/write access to a component.
Definition: vector.C:302
Evolution_std< Vector > beta_evol
Values at successive time steps of the shift vector .
Definition: time_slice.h:222
double regularise_one()
Corrects the shift in the innermost shell, so that it remains and that equals zero on the horizon...
const Map & get_mp() const
Returns the mapping.
Definition: tensor.h:874
double boost_z
Boost velocity in z-direction.
Definition: isol_hor.h:275
Tbl diffrelmax(const Cmp &a, const Cmp &b)
Relative difference between two Cmp (max version).
Definition: cmp_math.C:542
const Valeur & get_spectral_va() const
Returns va (read only version)
Definition: scalar.h:607
Coord r
r coordinate centered on the grid
Definition: map.h:730