LORENE
gravastar.C
1 /*
2  * Methods of class Gravastar
3  *
4  * (see file gravastar.h for documentation).
5  *
6  */
7 
8 /*
9  * Copyright (c) 2010 Frederic Vincent
10  *
11  * This file is part of LORENE.
12  *
13  * LORENE is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2
15  * as published by the Free Software Foundation.
16  *
17  * LORENE is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with LORENE; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25  *
26  */
27 
28 
29 
30 
31 // C++ headers
32 //#include <>
33 
34 // C headers
35 #include <cmath>
36 
37 // Lorene headers
38 #include "gravastar.h"
39 #include "eos.h"
40 #include "utilitaires.h"
41 #include "param.h"
42 #include "unites.h"
43 #include "nbr_spx.h"
44 
45 
46  //---------------------//
47  // Constructor //
48  //---------------------//
49 
50 namespace Lorene {
51 Gravastar::Gravastar(Map& mpi, int nzet_i, const Eos& eos_i, const double rho_core_i)
52  : Star_rot(mpi,nzet_i,true,eos_i), rho_core(rho_core_i)
53 {}
54 
55  //------------//
56  // Destructor //
57  //------------//
58 
60  del_deriv() ;
61 }
62 
63  //----------------------//
64  // Eq. of state //
65  //----------------------//
66 
68 
69  Scalar ent_eos = ent ;
70 
71 
72  // Slight rescale of the enthalpy field in case of 2 domains inside the
73  // star
74 
75 
76  double epsilon = 1.e-12 ;
77 
78  const Mg3d* mg = mp.get_mg() ;
79  int nz = mg->get_nzone() ;
80 
81  Mtbl xi(mg) ;
82  xi.set_etat_qcq() ;
83  for (int l=0; l<nz; l++) {
84  xi.t[l]->set_etat_qcq() ;
85  for (int k=0; k<mg->get_np(l); k++) {
86  for (int j=0; j<mg->get_nt(l); j++) {
87  for (int i=0; i<mg->get_nr(l); i++) {
88  xi.set(l,k,j,i) =
89  mg->get_grille3d(l)->x[i] ;
90  }
91  }
92  }
93 
94  }
95 
96  Scalar fact_ent(mp) ;
97  fact_ent.allocate_all() ;
98 
99  fact_ent.set_domain(0) = 1 + epsilon * xi(0) * xi(0) ;
100  fact_ent.set_domain(1) = 1 - 0.25 * epsilon * (xi(1) - 1) * (xi(1) - 1) ;
101 
102  for (int l=nzet; l<nz; l++) {
103  fact_ent.set_domain(l) = 1 ;
104  }
105 
106  if (nzet > 1) {
107 
108  if (nzet > 2) {
109 
110  cout << "Gravastar::equation_of_state: not ready yet for nzet > 2 !"
111  << endl ;
112  }
113 
114  ent_eos = fact_ent * ent_eos ;
115  ent_eos.std_spectral_base() ;
116  }
117 
118 
119 
120  /*
121  Call to the Eos
122  There is no Eos inside the core where p=-rho=cst. Thus the most internal domain in treated separately.
123  Inside the crust, the Eos is called domain by domain.
124  */
125 
126  Scalar tempo(mp) ;
127 
128  //nbar.set_etat_qcq() ;
129  nbar = 0 ;
130  for (int l=1; l<nzet; l++) {
131 
132  Param par ; // Paramater for multi-domain equation of state
133  par.add_int(l) ;
134 
135 
136 
137  tempo = eos.nbar_ent(ent_eos, 1, l, &par) ;
138  //cout << "tempo eos= " << tempo << endl;
139  nbar = nbar + tempo ;
140 
141  }
142 
143  //ener.set_etat_qcq() ;
144  ener = rho_core ;
145  ener.annule(1,nz-1);
146  for (int l=1; l<nzet; l++) {
147 
148  Param par ; // Paramater for multi-domain equation of state
149  par.add_int(l) ;
150 
151  tempo = eos.ener_ent(ent_eos, 1, l, &par) ;
152 
153  ener = ener + tempo ;
154 
155  }
156 
157  //press.set_etat_qcq() ;
158  press = -rho_core ;
159  press.annule(1,nz-1);
160  for (int l=1; l<nzet; l++) {
161 
162  Param par ; // Paramater for multi-domain equation of state
163  par.add_int(l) ;
164 
165  tempo = eos.press_ent(ent_eos, 1, l, &par) ;
166 
167  press = press + tempo ;
168 
169  }
170 
171 
172  // Set the bases for spectral expansion
176 
177  // The derived quantities are obsolete
178  del_deriv() ;
179 
180 }
181 
182 // Printing
183 // --------
184 
185 ostream& Gravastar::operator>>(ostream& ost) const {
186 
187  using namespace Unites ;
188 
189  ost << endl ;
190 
191  ost << "Number of domains occupied by the star : " << nzet << endl ;
192 
193  ost << "Equation of state : " << endl ;
194  ost << eos << endl ;
195 
196  const Mg3d* mg = mp.get_mg() ;
197  int l_cr = 0, i_cr = mg->get_nr(l_cr) - 1, j_cr = mg->get_nt(l_cr) - 1, k_cr = 0 ;
198 
199  ost << endl << "Inner crust enthalpy : " << ent.val_grid_point(l_cr, k_cr, j_cr, i_cr) << " c^2" << endl ;
200 
201  ost << "Central proper energy density : " << ener.val_grid_point(0,0,0,0)
202  << " rho_nuc c^2" << endl ;
203  ost << "Central pressure : " << press.val_grid_point(0,0,0,0)
204  << " rho_nuc c^2" << endl ;
205 
206  ost << endl ;
207  ost << "Central lapse N : " << nn.val_grid_point(0,0,0,0) << endl ;
208  // ost << "Central value of lnq : " << lnq.val_grid_point(0,0,0,0) << endl ;
209 
210  ost << endl
211  << "Coordinate equatorial radius (phi=0) a1 = "
212  << ray_eq()/km << " km" << endl ;
213  ost << "Coordinate equatorial radius (phi=pi/2) a2 = "
214  << ray_eq_pis2()/km << " km" << endl ;
215  ost << "Coordinate equatorial radius (phi=pi): "
216  << ray_eq_pi()/km << " km" << endl ;
217  ost << "Coordinate polar radius a3 = "
218  << ray_pole()/km << " km" << endl ;
219  ost << "Axis ratio a2/a1 = " << ray_eq_pis2() / ray_eq()
220  << " a3/a1 = " << ray_pole() / ray_eq() << endl ;
221 
223 
224  double omega_c = get_omega_c() ;
225 
226  ost << endl ;
227 
228  if (omega != __infinity) {
229  ost << "Uniformly rotating star" << endl ;
230  ost << "-----------------------" << endl ;
231 
232  double freq = omega / (2.*M_PI) ;
233  ost << "Omega : " << omega * f_unit
234  << " rad/s f : " << freq * f_unit << " Hz" << endl ;
235  ost << "Rotation period : " << 1000. / (freq * f_unit) << " ms"
236  << endl ;
237 
238  }
239  else {
240  ost << "Differentially rotating star" << endl ;
241  ost << "----------------------------" << endl ;
242 
243  double freq = omega_c / (2.*M_PI) ;
244  ost << "Central value of Omega : " << omega_c * f_unit
245  << " rad/s f : " << freq * f_unit << " Hz" << endl ;
246  ost << "Central rotation period : " << 1000. / (freq * f_unit) << " ms"
247  << endl ;
248  }
249 
250  // double compact = qpig/(4.*M_PI) * mass_g() / r_circ() ;
251  //ost << "Compactness G M_g /(c^2 R_circ) : " << compact << endl ;
252 
253  double nphi_c = nphi.val_grid_point(0, 0, 0, 0) ;
254  if ( (omega_c==0) && (nphi_c==0) ) {
255  ost << "Central N^phi : " << nphi_c << endl ;
256  }
257  else{
258  ost << "Central N^phi/Omega : " << nphi_c / omega_c << endl ;
259  }
260 
261  ost << "Error on the virial identity GRV2 : " << grv2() << endl ;
262  double xgrv3 = grv3(&ost) ;
263  ost << "Error on the virial identity GRV3 : " << xgrv3 << endl ;
264 
265  // cout << "ICI" << endl;
266  double mom_quad_38si = mom_quad() * rho_unit * (pow(r_unit, double(5.))
267  / double(1.e38) ) ;
268 //cout << "LA" << endl;
269  ost << "Quadrupole moment Q : " << mom_quad_38si << " 10^38 kg m^2"
270  << endl ;
271 
272  /*ost << "Q / (M R_circ^2) : "
273  << mom_quad() / ( mass_g() * pow( r_circ(), 2. ) ) << endl ;
274  ost << "c^4 Q / (G^2 M^3) : "
275  << mom_quad() / ( pow(qpig/(4*M_PI), 2.) * pow(mass_g(), 3.) )
276  << endl ; */
277 
278  ost << "Angular momentum J : "
279  << angu_mom()/( qpig / (4* M_PI) * msol*msol) << " G M_sol^2 / c"
280  << endl ;
281  /* ost << "c J / (G M^2) : "
282  << angu_mom()/( qpig / (4* M_PI) * pow(mass_g(), 2.) ) << endl ; */
283 
284 if (omega != __infinity) {
285  double mom_iner = angu_mom() / omega ;
286  double mom_iner_38si = mom_iner * rho_unit * (pow(r_unit, double(5.))
287  / double(1.e38) ) ;
288  ost << "Moment of inertia: " << mom_iner_38si << " 10^38 kg m^2"
289  << endl ;
290  }
291 
292  ost << "Ratio T/W : " << tsw() << endl ;
293  ost << "Circumferential equatorial radius R_circ : "
294  << r_circ()/km << " km" << endl ;
295  ost << "Coordinate equatorial radius r_eq : " << ray_eq()/km << " km"
296  << endl ;
297  ost << "Flattening r_pole/r_eq : " << aplat() << endl ;
298 
299  //cout << "ICI" << endl;
300 
301  int lsurf = nzet - 1;
302  int nt = mp.get_mg()->get_nt(lsurf) ;
303  int nr = mp.get_mg()->get_nr(lsurf) ;
304  ost << "Equatorial value of the velocity U: "
305  << uuu.val_grid_point(nzet-1, 0, nt-1, nr-1) << " c" << endl ;
306  ost << "Redshift at the equator (forward) : " << z_eqf() << endl ;
307  ost << "Redshift at the equator (backward): " << z_eqb() << endl ;
308  ost << "Redshift at the pole : " << z_pole() << endl ;
309 
310 
311  ost << "Central value of log(N) : "
312  << logn.val_grid_point(0, 0, 0, 0) << endl ;
313 
314  ost << "Central value of dzeta=log(AN) : "
315  << dzeta.val_grid_point(0, 0, 0, 0) << endl ;
316 
317  if ( (omega_c==0) && (nphi_c==0) ) {
318  ost << "Central N^phi : " << nphi_c << endl ;
319  }
320  else{
321  ost << "Central N^phi/Omega : " << nphi_c / omega_c << endl ;
322  }
323 
324  ost << " ... w_shift (NB: components in the star Cartesian frame) [c] : "
325  << endl
326  << w_shift(1).val_grid_point(0, 0, 0, 0) << " "
327  << w_shift(2).val_grid_point(0, 0, 0, 0) << " "
328  << w_shift(3).val_grid_point(0, 0, 0, 0) << endl ;
329 
330  ost << "Central value of khi_shift [km c] : "
331  << khi_shift.val_grid_point(0, 0, 0, 0) / km << endl ;
332 
333  ost << "Central value of B^2 : " << b_car.val_grid_point(0,0,0,0) << endl ;
334 
335  Tbl diff_a_b = diffrel( a_car, b_car ) ;
336  ost <<
337  "Relative discrepancy in each domain between the metric coef. A^2 and B^2 : "
338  << endl ;
339  for (int l=0; l<diff_a_b.get_taille(); l++) {
340  ost << diff_a_b(l) << " " ;
341  }
342  ost << endl ;
343 
344  // Approximate formula for R_isco = 6 R_g (1-(2/3)^1.5 j )
345  // up to the first order in j
346 
347  /*double jdimless = angu_mom() / ( ggrav * pow(mass_g(), 2.) ) ;
348  double r_grav = ggrav * mass_g() ;
349  double r_isco_appr = 6. * r_grav * ( 1. - pow(2./3.,1.5) * jdimless ) ;*/
350 
351  // Approximate formula for the ISCO frequency
352  // freq_ms = 6^{-1.5}/2pi/R_g (1+11*6^(-1.5) j )
353  // up to the first order in j
354 
355  /* double f_isco_appr = ( 1. + 11. /6. /sqrt(6.) * jdimless ) / r_grav /
356  (12. * M_PI ) / sqrt(6.) ;*/
357 
358  /* ost << endl << "Innermost stable circular orbit (ISCO) : " << endl ;
359  double xr_isco = r_isco(&ost) ;
360  ost <<" circumferential radius r_isco = "
361  << xr_isco / km << " km" << endl ;
362  ost <<" (approx. 6M + 1st order in j : "
363  << r_isco_appr / km << " km)" << endl ;
364  ost <<" (approx. 6M : "
365  << 6. * r_grav / km << " km)" << endl ;
366  ost <<" orbital frequency f_isco = "
367  << f_isco() * f_unit << " Hz" << endl ;
368  ost <<" (approx. 1st order in j : "
369  << f_isco_appr * f_unit << " Hz)" << endl ;*/
370 
371 
372  return ost ;
373 
374 }
375 }
void equation_of_state()
Allows to computes the proper baryon and energy density, as well as pressure from the enthalpy...
Definition: gravastar.C:67
const Grille3d * get_grille3d(int l) const
Returns a pointer on the 3D mono-grid for domain no. l.
Definition: grilles.h:517
Scalar dzeta
Metric potential .
Definition: star_rot.h:146
Cmp ener_ent(const Cmp &ent, int nzet, int l_min=0, Param *par=0x0) const
Computes the total energy density from the log-enthalpy and extra parameters.
Definition: eos.C:387
Scalar a_car
Square of the metric factor A.
Definition: star_rot.h:116
void add_int(const int &n, int position=0)
Adds the address of a new int to the list.
Definition: param.C:249
Map & mp
Mapping associated with the star.
Definition: star.h:180
int get_np(int l) const
Returns the number of points in the azimuthal direction ( ) in domain no. l.
Definition: grilles.h:479
Scalar khi_shift
Scalar used in the decomposition of shift , following Shibata&#39;s prescription [Prog.
Definition: star_rot.h:172
virtual void annule(int l_min, int l_max)
Sets the Scalar to zero in several domains.
Definition: scalar.C:397
Multi-domain array.
Definition: mtbl.h:118
Lorene prototypes.
Definition: app_hor.h:67
const Eos & eos
Equation of state of the stellar matter.
Definition: star.h:185
Standard units of space, time and mass.
Equation of state base class.
Definition: eos.h:209
const Mg3d * get_mg() const
Gives the Mg3d on which the mapping is defined.
Definition: map.h:783
virtual double z_pole() const
Redshift factor at North pole.
Tensor field of valence 0 (or component of a tensorial field).
Definition: scalar.h:393
virtual double grv2() const
Error on the virial identity GRV2.
Base class for coordinate mappings.
Definition: map.h:688
virtual double get_omega_c() const
Returns the central value of the rotation angular velocity ([f_unit] )
Definition: star_rot.C:666
virtual void del_deriv() const
Deletes all the derived quantities.
Definition: star_rot.C:310
virtual void std_spectral_base()
Sets the spectral bases of the Valeur va to the standard ones for a scalar field. ...
Definition: scalar.C:790
virtual void allocate_all()
Sets the logical state to ETATQCQ (ordinary state) and performs the memory allocation of all the elem...
Definition: scalar.C:371
double omega
Rotation angular velocity ([f_unit] )
Definition: star_rot.h:113
Scalar nbar
Baryon density in the fluid frame.
Definition: star.h:192
Scalar ent
Log-enthalpy.
Definition: star.h:190
double * x
Array of values of at the nr collocation points.
Definition: grilles.h:215
Tbl & set_domain(int l)
Read/write of the value in a given domain.
Definition: scalar.h:621
Tbl diffrel(const Cmp &a, const Cmp &b)
Relative difference between two Cmp (norme version).
Definition: cmp_math.C:507
Class for isolated rotating stars.
Definition: star_rot.h:98
double val_grid_point(int l, int k, int j, int i) const
Returns the value of the field at a specified grid point.
Definition: scalar.h:643
void set_etat_qcq()
Sets the logical state to ETATQCQ (ordinary state).
Definition: tbl.C:364
int nzet
Number of domains of *mp occupied by the star.
Definition: star.h:183
Scalar nphi
Metric coefficient .
Definition: star_rot.h:125
Cmp nbar_ent(const Cmp &ent, int nzet, int l_min=0, Param *par=0x0) const
Computes the baryon density field from the log-enthalpy field and extra parameters.
Definition: eos.C:362
Scalar ener
Total energy density in the fluid frame.
Definition: star.h:193
~Gravastar()
Destructor.
Definition: gravastar.C:59
Scalar press
Fluid pressure.
Definition: star.h:194
double ray_eq_pis2() const
Coordinate radius at , [r_unit].
Definition: star_global.C:141
virtual double mom_quad() const
Quadrupole moment.
double rho_core
Energy density in gravastar&#39;s core.
Definition: gravastar.h:57
virtual double angu_mom() const
Angular momentum.
Parameter storage.
Definition: param.h:125
int get_nzone() const
Returns the number of domains.
Definition: grilles.h:465
double ray_eq_pi() const
Coordinate radius at , [r_unit].
Definition: star_global.C:189
virtual double r_circ() const
Circumferential equatorial radius.
Cmp pow(const Cmp &, int)
Power .
Definition: cmp_math.C:351
Scalar logn
Logarithm of the lapse N .
Definition: star.h:222
virtual ostream & operator>>(ostream &) const
Operator >> (virtual function called by the operator <<).
Definition: gravastar.C:185
Scalar b_car
Square of the metric factor B.
Definition: star_rot.h:122
void set_etat_qcq()
Sets the logical state to ETATQCQ (ordinary state).
Definition: mtbl.C:302
Tbl & set(int l)
Read/write of the Tbl in a given domain.
Definition: mtbl.h:221
double ray_pole() const
Coordinate radius at [r_unit].
Definition: star_global.C:281
int get_nr(int l) const
Returns the number of points in the radial direction ( ) in domain no. l.
Definition: grilles.h:469
Multi-domain grid.
Definition: grilles.h:279
virtual double z_eqb() const
Backward redshift factor at equator.
virtual double grv3(ostream *ost=0x0) const
Error on the virial identity GRV3.
Scalar nn
Lapse function N .
Definition: star.h:225
int get_taille() const
Gives the total size (ie dim.taille)
Definition: tbl.h:417
Scalar uuu
Norm of u_euler.
Definition: star_rot.h:133
double ray_eq() const
Coordinate radius at , [r_unit].
Definition: star_global.C:111
Basic array class.
Definition: tbl.h:164
int get_nt(int l) const
Returns the number of points in the co-latitude direction ( ) in domain no. l.
Definition: grilles.h:474
Tbl ** t
Array (size nzone ) of pointers on the Tbl &#39;s.
Definition: mtbl.h:132
virtual double aplat() const
Flatening r_pole/r_eq.
Vector w_shift
Vector used in the decomposition of shift , following Shibata&#39;s prescription [Prog.
Definition: star_rot.h:162
virtual double z_eqf() const
Forward redshift factor at equator.
Cmp press_ent(const Cmp &ent, int nzet, int l_min=0, Param *par=0x0) const
Computes the pressure from the log-enthalpy and extra parameters.
Definition: eos.C:409
virtual double tsw() const
Ratio T/W.
Gravastar(Map &mp_i, int nzet_i, const Eos &eos_i, const double rho_core_i)
Standard constructor.
Definition: gravastar.C:51