Lorene::Eos_bf_tabul Class Reference

Class for a two-fluid (tabulated) equation of state. More...

#include <eos_bifluid.h>

Inheritance diagram for Lorene::Eos_bf_tabul:
Lorene::Eos_bifluid

List of all members.

Public Member Functions

virtual ~Eos_bf_tabul ()
 Destructor.
virtual bool operator== (const Eos_bifluid &) const
 Comparison operator (egality).
virtual bool operator!= (const Eos_bifluid &) const
 Comparison operator (difference).
virtual int identify () const
 Returns a number to identify the sub-classe of Eos the object belongs to.
virtual void sauve (FILE *) const
 Save in a file.
void calcule_interpol (const Cmp &ent1, const Cmp &ent2, const Cmp &delta2, Cmp &nbar1, Cmp &nbar2, Cmp &ener, Cmp &press, Cmp &K_nn, Cmp &K_np, Cmp &K_pp, Cmp &alpha_eos, int nzet, int l_min=0) const
 General computational method for Cmp 's, it computes both baryon densities, energy and pressure profiles, the entrainment coefficient alpha and the K_{XY}'s.
virtual bool nbar_ent_p (const double ent1, const double ent2, const double delta2, double &nbar1, double &nbar2) const
 Computes both baryon densities from the log-enthalpies.
virtual double nbar_ent_p1 (const double ent1) const
 Computes baryon density out of the log-enthalpy asuming that only fluid 1 is present.
virtual double nbar_ent_p2 (const double ent2) const
 Computes baryon density out of the log-enthalpy assuming that only fluid 2 is present.
virtual double ener_nbar_p (const double nbar1, const double nbar2, const double delta2) const
 Computes the total energy density from the baryonic densities and the relative velocity.
virtual double press_nbar_p (const double nbar1, const double nbar2, const double delta2) const
 Computes the pressure from the baryonic densities and the relative velocity.
virtual double get_K11 (const double delta2, const double ent1, const double ent2) const
 Computes the derivative of the energy with respect to (baryonic density 1)$^2$.
virtual double get_K12 (const double delta2, const double ent1, const double ent2) const
 Computes the derivative of the energy with respect to $x^2=n_1n_2\Gamma_\Delta$.
virtual double get_K22 (const double delta2, const double ent1, const double ent2) const
 Computes the derivative of the energy/(baryonic density 2)$^2$.
virtual double ener_ent_p (const double ent1, const double ent2, const double delta_car) const
 Computes the total energy density from the baryonic log-enthalpies and the relative velocity.
virtual double press_ent_p (const double ent1, const double ent2, const double delta_car) const
 Computes the pressure from the baryonic log-enthalpies and the relative velocity.
virtual double alpha_ent_p (const double ent1, const double ent2, const double delta_car) const
 Computes alpha, the derivative of the total energy density with respect to $ Delta^2$ from the baryonic log-enthalpies and the relative velocity.
void interpol_3d_bifluid (const double delta2, const double mu1, const double mu2, double &press, double &nbar1, double &nbar2, double &alpha) const
 General method computing the pressure, both baryon densities and alpha from the values of both chemical potentials and the relative speed at the point under consideration.
void interpol_2d_Tbl3d (const int i, const int j, const int k, const Tbl &ytab, const Tbl &ztab, const Tbl &ftab, const Tbl &dfdytab, const Tbl &dfdztab, const Tbl &d2fdydztab, const double y, const double z, double &f, double &dfdy, double &dfdz) const
 Routine used by interpol_3d_bifluid to perform the 2D interpolation on the chemical potentials on each slice of constant $\Delta^2 $.
virtual Eostrans2Eos () const
 Makes a translation from Eos_bifluid to Eos .
string get_name () const
 Returns the EOS name.
double get_m1 () const
 Return the individual particule mass $m_1$.
double get_m2 () const
 Return the individual particule mass $m_2$.
virtual bool operator== (const Eos_bifluid &) const =0
 Comparison operator (egality).
virtual bool operator!= (const Eos_bifluid &) const =0
 Comparison operator (difference).
virtual void calcule_tout (const Cmp &ent1, const Cmp &ent2, const Cmp &delta2, Cmp &nbar1, Cmp &nbar2, Cmp &ener, Cmp &press, int nzet, int l_min=0) const
 General computational method for Cmp 's, it computes both baryon densities, energy and pressure profiles.
void nbar_ent (const Cmp &ent1, const Cmp &ent2, const Cmp &delta2, Cmp &nbar1, Cmp &nbar2, int nzet, int l_min=0) const
 Computes both baryon density fields from the log-enthalpy fields and the relative velocity.
Cmp ener_ent (const Cmp &ent1, const Cmp &ent2, const Cmp &delta2, int nzet, int l_min=0) const
 Computes the total energy density from the log-enthalpy fields and the relative velocity.
Cmp press_ent (const Cmp &ent1, const Cmp &ent2, const Cmp &delta2, int nzet, int l_min=0) const
 Computes the pressure from the log-enthalpy fields and the relative velocity.
Cmp get_Knn (const Cmp &nbar1, const Cmp &nbar2, const Cmp &x2, int nzet, int l_min=0) const
 Computes the derivatives of the energy/(baryonic density 1)$^2$.
Cmp get_Kpp (const Cmp &nbar1, const Cmp &nbar2, const Cmp &x2, int nzet, int l_min=0) const
 Computes the derivatives of the energy/(baryonic density 2)$^2$.
Cmp get_Knp (const Cmp &nbar1, const Cmp &nbar2, const Cmp &x2, int nzet, int l_min=0) const
 Computes the derivatives of the energy with respect to $x^2=n_1n_2\Gamma_\Delta^2$.
void calcule (const Cmp &nbar1, const Cmp &nbar2, const Cmp &x2, int nzet, int l_min, double(Eos_bifluid::*fait)(double, double, double) const, Cmp &resu) const
 General computational method for Cmp 's ($K^{ij}$'s).

Static Public Member Functions

static Eos_bifluideos_from_file (FILE *)
 Construction of an EOS from a binary file.
static Eos_bifluideos_from_file (const char *fname)
 Construction of an EOS from a formatted file.
static Eos_bifluideos_from_file (ifstream &)
 Construction of an EOS from a formatted file.

Protected Member Functions

 Eos_bf_tabul (const char *name_i, const char *table, const char *path, double mass1, double mass2)
 Standard constructor.
 Eos_bf_tabul (const char *name_i, const char *file_name, double mass1, double mass2)
 Standard constructor from the full filename.
 Eos_bf_tabul (FILE *)
 Constructor from a binary file (created by the function sauve(FILE*) ).
 Eos_bf_tabul (ifstream &ist, const char *table)
 Constructor from a formatted file.
 Eos_bf_tabul (ifstream &ist)
 Constructor from a formatted file.
void read_table ()
 Reads the file containing the table and initializes the arrays mu1_tab, mu2_tab, delta_car_tab, press_tab, n1_tab, n2_tab, c\ d2psdmu1dmu2_tab , c\ dpsddelta_car_tab, c\ dn1sddelta_car_tab, c\ dn2sddelta_car_tab.
virtual ostream & operator>> (ostream &) const
 Operator >>.

Protected Attributes

string tablename
 Name of the file containing the tabulated data (be careful, Eos_bifluid uses char*).
string authors
 Authors.
double delta_car_min
 Lower boundary of the relative velocity interval.
double delta_car_max
 Upper boundary of the relative velocity interval.
double mu1_min
 Lower boundary of the chemical-potential interval (fluid 1 = n).
double mu1_max
 Upper boundary of the chemical-potential interval (fluid 1 = n).
double mu2_min
 Lower boundary of the chemical-potential interval (fluid 2 = p).
double mu2_max
 Upper boundary of the chemical-potential interval (fluid 2 = p).
Tblmu1_tab
 Table of $ \mu_n $ where $ \mu_n = m_n * \exp ( H_n ) $.
Tblmu2_tab
 Table of $ \mu_p $ where $ \mu_p = m_p * \exp ( H_p ) $.
Tbldelta_car_tab
 Table of $ \Delta^{2} $.
Tblpress_tab
 Table of $ \Psi $.
Tbln1_tab
 Table of $ n_n = \frac {\partial \Psi} {\partial \mu_n} $.
Tbln2_tab
 Table of $ n_p = \frac {\partial \Psi} {\partial \mu_p} $.
Tbld2psdmu1dmu2_tab
 Table of $ \frac {\partial^2 \Psi} {\partial \mu_n \partial \mu_p} = \frac {\partial n_n} {\partial \mu_p} = \frac {\partial n_p} {\partial \mu_n} $.
Tbldpsddelta_car_tab
 Table of $ \frac {\partial \Psi}{\partial \Delta^{2}} = - \alpha $.
Tbldn1sddelta_car_tab
 Table of $ \frac {\partial^2 \Psi} {\partial \mu_n \partial \Delta^{2}} = \frac{\partial n_n}{\partial \Delta^{2}} $.
Tbldn2sddelta_car_tab
 Table of $ \frac {\partial^2 \Psi} {\partial \mu_p \partial \Delta^{2}} = \frac{\partial n_p}{\partial \Delta^{2}} $.
Tbldelta_car_n0
Tblmu1_n0
Tblmu2_n0
Tbldelta_car_p0
Tblmu1_p0
Tblmu2_p0
Tblmu1_N
Tbln_n_N
Tblpress_N
Tblmu2_P
Tbln_p_P
Tblpress_P
string name
 EOS name.
double m_1
 Individual particle mass $m_1$ [unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$].
double m_2
 Individual particle mass $m_2$ [unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$].

Private Member Functions

 Eos_bf_tabul (const Eos_bf_tabul &)
 Copy constructor.
void operator= (const Eos_bf_tabul &)
 Assignment to another Eos_bf_tabul.

Friends

Eos_bifluidEos_bifluid::eos_from_file (FILE *)
 The construction functions from a file.
Eos_bifluidEos_bifluid::eos_from_file (ifstream &)
ostream & operator<< (ostream &, const Eos_bifluid &)
 Display.

Detailed Description

Class for a two-fluid (tabulated) equation of state.

This EOS depends on three variables $(\Delta^2, \mu_n, \mu_p )$: relative velocity between the two fluids and the two enthalpies (for neutrons and protons).

The interpolation through the tables is a cubic Hermite interpolation in $\mu_n$ and $\mu_p$ which is thermodynamically consistent, i.e. preserves the Gibbs-Duhem relation. It is defined in [Nozawa, Stergioulas, Gourgoulhon & Eriguchi, Astron. Astrophys. Suppl. Ser. 132 , 431 (1998)], and derives from a general technique presented in [Swesty, J. Comp. Phys. 127 , 118 (1996)]. A simple linear interpolation is used on $\Delta^{2}$.

Definition at line 1432 of file eos_bifluid.h.


Constructor & Destructor Documentation

Lorene::Eos_bf_tabul::Eos_bf_tabul ( const char *  name_i,
const char *  table,
const char *  path,
double  mass1,
double  mass2 
) [protected]

Standard constructor.

Parameters:
name_i Name of the equation of state
table Name of the file containing the EOS table
path Path to the directory containing the EOS file
mass1 Mass of particles in fluid 1 (neutrons)
mass2 Mass of particles in fluid 2 (protons)

Definition at line 84 of file eos_bf_tabul.C.

References read_table(), and tablename.

Lorene::Eos_bf_tabul::Eos_bf_tabul ( const char *  name_i,
const char *  file_name,
double  mass1,
double  mass2 
) [protected]

Standard constructor from the full filename.

Parameters:
name_i Name of the equation of state
file_name Full name of the file containing the EOS table (including the absolute path).
mass1 Mass of particles in fluid 1 (neutrons)
mass2 Mass of particles in fluid 2 (protons)

Definition at line 97 of file eos_bf_tabul.C.

References read_table(), and tablename.

Lorene::Eos_bf_tabul::Eos_bf_tabul ( const Eos_bf_tabul  )  [private]

Copy constructor.

Lorene::Eos_bf_tabul::Eos_bf_tabul ( FILE *  fich  )  [protected]

Constructor from a binary file (created by the function sauve(FILE*) ).

This constructor is protected because any EOS construction from a binary file must be done via the function Eos_bifluid::eos_from_file(FILE*) .

Definition at line 108 of file eos_bf_tabul.C.

References read_table(), and tablename.

Lorene::Eos_bf_tabul::Eos_bf_tabul ( ifstream &  ist,
const char *  table 
) [protected]

Constructor from a formatted file.

This constructor is protected because any EOS construction from a formatted file must be done via the function Eos_bifluid::eos_from_file(ifstream& ) .

Parameters:
ist input file stream containing a name as first line and the path to the directory containing the EOS file as second line
table Name of the file containing the EOS table

Definition at line 120 of file eos_bf_tabul.C.

References read_table(), and tablename.

Lorene::Eos_bf_tabul::Eos_bf_tabul ( ifstream &  ist  )  [protected]

Constructor from a formatted file.

This constructor is protected because any EOS construction from a formatted file must be done via the function Eos::eos_from_file(ifstream& ) .

Parameters:
ist input file stream containing a name as first line and the full filename (including the path) containing the EOS file as second line

Definition at line 130 of file eos_bf_tabul.C.

References Lorene::Eos_bifluid::name, read_table(), and tablename.

Lorene::Eos_bf_tabul::~Eos_bf_tabul (  )  [virtual]

Member Function Documentation

double Lorene::Eos_bf_tabul::alpha_ent_p ( const double  ent1,
const double  ent2,
const double  delta_car 
) const [virtual]

Computes alpha, the derivative of the total energy density with respect to $ Delta^2$ from the baryonic log-enthalpies and the relative velocity.

Parameters:
ent1 [input, unit: $c^2$] log-enthalpy $H_1$ of fluid 1
ent2 [input, unit: $c^2$] log-enthalpy $H_2$ of fluid 2
delta2 [input, unit: $c^2$] relative velocity $ \Delta^2$
Returns:
$\alpha$

Definition at line 1177 of file eos_bf_tabul.C.

References delta_car_max, delta_car_min, Lorene::exp(), interpol_3d_bifluid(), Lorene::Eos_bifluid::m_1, Lorene::Eos_bifluid::m_2, mu1_max, and mu2_max.

void Lorene::Eos_bifluid::calcule ( const Cmp nbar1,
const Cmp nbar2,
const Cmp x2,
int  nzet,
int  l_min,
double(Eos_bifluid::*)(double, double, double) const   fait,
Cmp resu 
) const [inherited]

General computational method for Cmp 's ($K^{ij}$'s).

Parameters:
nbar1 [input, unit $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryonic density field of fluid 1 at which the derivatives are to be computed.
nbar2 [input, unit $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryonic density field of fluid 2 at which the derivatives are to be computed
x2 [input, unit $n_{\rm nuc}^2c^2$] relative velocity$\times$both densities at which the derivative is to be computed
nzet [input] number of domains where resu is to be computed.
l_min [input] index of the innermost domain is which resu is to be computed [default value: 0]; resu is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
fait [input] pointer on the member function of class Eos_bifluid which performs the pointwise calculation.
resu [output] result of the computation.

Definition at line 661 of file eos_bifluid.C.

References Lorene::Cmp::annule(), Lorene::Valeur::c, Lorene::Valeur::coef_i(), Lorene::Tbl::get_etat(), Lorene::Cmp::get_etat(), Lorene::Cmp::get_mp(), Lorene::Mg3d::get_nzone(), Lorene::Tbl::get_taille(), Lorene::Valeur::set_etat_c_qcq(), Lorene::Tbl::set_etat_qcq(), Lorene::Mtbl::set_etat_qcq(), Lorene::Cmp::set_etat_qcq(), Lorene::Cmp::set_etat_zero(), Lorene::Tbl::t, Lorene::Mtbl::t, and Lorene::Cmp::va.

void Lorene::Eos_bf_tabul::calcule_interpol ( const Cmp ent1,
const Cmp ent2,
const Cmp delta2,
Cmp nbar1,
Cmp nbar2,
Cmp ener,
Cmp press,
Cmp K_nn,
Cmp K_np,
Cmp K_pp,
Cmp alpha_eos,
int  nzet,
int  l_min = 0 
) const

General computational method for Cmp 's, it computes both baryon densities, energy and pressure profiles, the entrainment coefficient alpha and the K_{XY}'s.

Parameters:
ent1 [input] the first log-enthalpy field $H_1$.
ent2 [input] the second log-enthalpy field $H_2$.
delta2 [input] the relative velocity field $\Delta^2 $
nbar1 [output] baryonic density of the first fluid
nbar2 [output] baryonic density of the second fluid [unit: $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$]
ener [output] total energy density $\cal E$ of both fluids together
press [output] pressure p of both fluids together
K_nn [output] coefficient $K_{nn}$
K_np [output] coefficient $K_{np}$
K_pp [output] coefficient $K_{pp}$
alpha_eos [output] coefficient $\alpha$
nzet [input] number of domains where resu is to be computed.
l_min [input] index of the innermost domain is which resu is to be computed [default value: 0]; resu is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.

Definition at line 757 of file eos_bf_tabul.C.

References Lorene::Cmp::allocate_all(), Lorene::Cmp::annule(), delta_car_max, delta_car_min, Lorene::exp(), Lorene::Cmp::get_etat(), Lorene::Cmp::get_mp(), Lorene::Mg3d::get_nzone(), interpol_3d_bifluid(), Lorene::Eos_bifluid::m_1, Lorene::Eos_bifluid::m_2, mu1_max, mu2_max, Lorene::pow(), Lorene::Cmp::set(), and Lorene::Cmp::set_etat_zero().

void Lorene::Eos_bifluid::calcule_tout ( const Cmp ent1,
const Cmp ent2,
const Cmp delta2,
Cmp nbar1,
Cmp nbar2,
Cmp ener,
Cmp press,
int  nzet,
int  l_min = 0 
) const [virtual, inherited]

General computational method for Cmp 's, it computes both baryon densities, energy and pressure profiles.

Parameters:
ent1 [input] the first log-enthalpy field $H_1$.
ent2 [input] the second log-enthalpy field $H_2$.
delta2 [input] the relative velocity field $\Delta^2 $
nbar1 [output] baryonic density of the first fluid
nbar2 [output] baryonic density of the second fluid [unit: $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$]
ener [output] total energy density $\cal E$ of both fluids together
press [output] pressure p of both fluids together
nzet [input] number of domains where resu is to be computed.
l_min [input] index of the innermost domain is which resu is to be computed [default value: 0]; resu is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.

Definition at line 286 of file eos_bifluid.C.

References Lorene::Cmp::allocate_all(), Lorene::Cmp::annule(), Lorene::Eos_bifluid::ener_nbar_p(), Lorene::Cmp::get_etat(), Lorene::Cmp::get_mp(), Lorene::Mg3d::get_nzone(), Lorene::Eos_bifluid::identify(), Lorene::Eos_bifluid::nbar_ent_p(), Lorene::Eos_bifluid::nbar_ent_p1(), Lorene::Eos_bifluid::nbar_ent_p2(), Lorene::Eos_bifluid::press_nbar_p(), Lorene::Cmp::set(), and Lorene::Cmp::set_etat_zero().

Cmp Lorene::Eos_bifluid::ener_ent ( const Cmp ent1,
const Cmp ent2,
const Cmp delta2,
int  nzet,
int  l_min = 0 
) const [inherited]

Computes the total energy density from the log-enthalpy fields and the relative velocity.

Parameters:
ent1 [input, unit: $c^2$] log-enthalpy $H_1$
ent2 [input, unit: $c^2$] log-enthalpy $H_2$
delta2 [input, unit: $c^2$] relative velocity $\Delta^2$
nzet number of domains where the energy density is to be computed.
l_min index of the innermost domain is which the energy density is to be computed [default value: 0]; the energy density is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
Returns:
energy density field [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Definition at line 504 of file eos_bifluid.C.

References Lorene::Eos_bifluid::ener_nbar_p(), Lorene::Cmp::get_etat(), Lorene::Map::get_mg(), Lorene::Cmp::get_mp(), Lorene::Mg3d::get_nzone(), Lorene::Eos_bifluid::nbar_ent_p(), Lorene::Eos_bifluid::nbar_ent_p1(), and Lorene::Eos_bifluid::nbar_ent_p2().

double Lorene::Eos_bf_tabul::ener_ent_p ( const double  ent1,
const double  ent2,
const double  delta_car 
) const [virtual]

Computes the total energy density from the baryonic log-enthalpies and the relative velocity.

Parameters:
ent1 [input, unit: $c^2$] log-enthalpy $H_1$ of fluid 1
ent2 [input, unit: $c^2$] log-enthalpy $H_2$ of fluid 2
delta2 [input, unit: $c^2$] relative velocity $ \Delta^2$
Returns:
energy density e [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Definition at line 1142 of file eos_bf_tabul.C.

References Lorene::exp(), interpol_3d_bifluid(), Lorene::Eos_bifluid::m_1, and Lorene::Eos_bifluid::m_2.

double Lorene::Eos_bf_tabul::ener_nbar_p ( const double  nbar1,
const double  nbar2,
const double  delta2 
) const [virtual]

Computes the total energy density from the baryonic densities and the relative velocity.

Parameters:
nbar1 [input] baryonic density of the first fluid
nbar2 [input] baryonic density of the second fluid [unit: $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$]
delta2 [input, unit: $c^2$] relative velocity $\Delta^2$
Returns:
energy density $\cal E$ [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Implements Lorene::Eos_bifluid.

Definition at line 1060 of file eos_bf_tabul.C.

References Lorene::c_est_pas_fait().

Eos_bifluid * Lorene::Eos_bifluid::eos_from_file ( ifstream &  fich  )  [static, inherited]

Construction of an EOS from a formatted file.

The fist line of the file must start by the EOS number, according to the following conventions:

  • 1 = 2-fluid relativistic polytropic EOS (class Eos_bf_poly ).
  • 2 = 2-fluid Newtonian polytropic EOS (class Eos_bf_poly_newt ).
  • 3 = 2-fluid tabulated EOS (class Eos_bf_tabul). The second line in the file should contain a name given by the user to the EOS. The following lines should contain the EOS parameters (one parameter per line), in the same order than in the class declaration.

Definition at line 190 of file eos_bf_file.C.

Eos_bifluid * Lorene::Eos_bifluid::eos_from_file ( const char *  fname  )  [static, inherited]

Construction of an EOS from a formatted file.

The following field has to be present:\ ident: [int] identifying the type of 2-fluid EOS 1 = relativistic polytropic EOS (class Eos_bf_poly ). \ 2 = Newtonian polytropic EOS (class Eos_bf_poly_newt ).

Definition at line 148 of file eos_bf_file.C.

References Lorene::read_variable().

Eos_bifluid * Lorene::Eos_bifluid::eos_from_file ( FILE *  fich  )  [static, inherited]

Construction of an EOS from a binary file.

The file must have been created by the function sauve(FILE*) .

Definition at line 111 of file eos_bf_file.C.

References Lorene::fread_be().

double Lorene::Eos_bf_tabul::get_K11 ( const double  delta2,
const double  ent1,
const double  ent2 
) const [virtual]

Computes the derivative of the energy with respect to (baryonic density 1)$^2$.

Parameters:
ent1 [input, unit: $c^2$] log-enthalpy $H_1$ of fluid 1 at which the derivative is to be computed
ent2 [input, unit: $c^2$] log-enthalpy $H_2$ of fluid 2 at which the derivative is to be computed
delta2 [input, unit: $c^2$] relative velocity $ \Delta^2$ at which the derivative is to be computed
Returns:
derivative $K^{11}=2\frac{\partial{\cal{E}}}{\partial{n_1^2}}$

Implements Lorene::Eos_bifluid.

Definition at line 1223 of file eos_bf_tabul.C.

References alpha_ent_p(), Lorene::exp(), Lorene::Eos_bifluid::m_1, and nbar_ent_p().

double Lorene::Eos_bf_tabul::get_K12 ( const double  delta2,
const double  ent1,
const double  ent2 
) const [virtual]

Computes the derivative of the energy with respect to $x^2=n_1n_2\Gamma_\Delta$.

Parameters:
ent1 [input, unit: $c^2$] log-enthalpy $H_1$ of fluid 1 at which the derivative is to be computed
ent2 [input, unit: $c^2$] log-enthalpy $H_2$ of fluid 2 at which the derivative is to be computed
delta2 [input, unit: $c^2$] relative velocity $ \Delta^2$ at which the derivative is to be computed
Returns:
derivative $K^{12}=\frac{\partial {\cal E}}{\partial (n_1n_2\Gamma_\Delta)}$

Implements Lorene::Eos_bifluid.

Definition at line 1270 of file eos_bf_tabul.C.

References alpha_ent_p(), Lorene::exp(), nbar_ent_p(), and Lorene::pow().

double Lorene::Eos_bf_tabul::get_K22 ( const double  delta2,
const double  ent1,
const double  ent2 
) const [virtual]

Computes the derivative of the energy/(baryonic density 2)$^2$.

Parameters:
ent1 [input, unit: $c^2$] log-enthalpy $H_1$ of fluid 1 at which the derivative is to be computed
ent2 [input, unit: $c^2$] log-enthalpy $H_2$ of fluid 2 at which the derivative is to be computed
delta2 [input, unit: $c^2$] relative velocity $ \Delta^2$ at which the derivative is to be computed
Returns:
derivative $K^{22} = 2\frac{\partial {\cal E}}{\partial n_2^2}$

Implements Lorene::Eos_bifluid.

Definition at line 1247 of file eos_bf_tabul.C.

References alpha_ent_p(), Lorene::exp(), Lorene::Eos_bifluid::m_2, and nbar_ent_p().

Cmp Lorene::Eos_bifluid::get_Knn ( const Cmp nbar1,
const Cmp nbar2,
const Cmp x2,
int  nzet,
int  l_min = 0 
) const [inherited]

Computes the derivatives of the energy/(baryonic density 1)$^2$.

Parameters:
nbar1 [input, unit $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryonic density field of fluid 1 at which the derivatives are to be computed
nbar2 [input, unit $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryonic density field of fluid 2 at which the derivatives are to be computed
x2 [input, unit $n_{\rm nuc}^2c^2$] relative velocity$\times$both densities at which the derivative is to be computed
nzet number of domains where the derivatives are to be computed.
l_min index of the innermost domain is which the derivatives are to be computed [default value: 0]; the derivatives are computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
Returns:
derivative $K^{11}$ field (see get_K11 )

Definition at line 750 of file eos_bifluid.C.

References Lorene::Eos_bifluid::calcule(), Lorene::Eos_bifluid::get_K11(), and Lorene::Cmp::get_mp().

Cmp Lorene::Eos_bifluid::get_Knp ( const Cmp nbar1,
const Cmp nbar2,
const Cmp x2,
int  nzet,
int  l_min = 0 
) const [inherited]

Computes the derivatives of the energy with respect to $x^2=n_1n_2\Gamma_\Delta^2$.

Parameters:
nbar1 [input, unit $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryonic density field of fluid 1 at which the derivatives are to be computed
nbar2 [input, unit $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryonic density field of fluid 2 at which the derivatives are to be computed
x2 [input, unit $n_{\rm nuc}^2c^2$] relative velocity$\times$both densities at which the derivative is to be computed
nzet number of domains where the derivatives are to be computed.
l_min index of the innermost domain is which the derivatives are to be computed [default value: 0]; the derivatives are computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
Returns:
derivative $K^{12}$ field (see get_K12 )

Definition at line 761 of file eos_bifluid.C.

References Lorene::Eos_bifluid::calcule(), Lorene::Eos_bifluid::get_K12(), and Lorene::Cmp::get_mp().

Cmp Lorene::Eos_bifluid::get_Kpp ( const Cmp nbar1,
const Cmp nbar2,
const Cmp x2,
int  nzet,
int  l_min = 0 
) const [inherited]

Computes the derivatives of the energy/(baryonic density 2)$^2$.

Parameters:
nbar1 [input, unit $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryonic density field of fluid 1 at which the derivatives are to be computed
nbar2 [input, unit $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryonic density field of fluid 2 at which the derivatives are to be computed
x2 [input, unit $n_{\rm nuc}^2c^2$] relative velocity$\times$both densities at which the derivative is to be computed
nzet number of domains where the derivatives are to be computed.
l_min index of the innermost domain is which the derivatives are to be computed [default value: 0]; the derivatives are computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
Returns:
derivative $K^{22}$ field (see get_K12 )

Definition at line 772 of file eos_bifluid.C.

References Lorene::Eos_bifluid::calcule(), Lorene::Eos_bifluid::get_K22(), and Lorene::Cmp::get_mp().

double Lorene::Eos_bifluid::get_m1 (  )  const [inline, inherited]

Return the individual particule mass $m_1$.

[unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$].

Definition at line 259 of file eos_bifluid.h.

References Lorene::Eos_bifluid::m_1.

double Lorene::Eos_bifluid::get_m2 (  )  const [inline, inherited]

Return the individual particule mass $m_2$.

[unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$].

Definition at line 265 of file eos_bifluid.h.

References Lorene::Eos_bifluid::m_2.

string Lorene::Eos_bifluid::get_name (  )  const [inline, inherited]

Returns the EOS name.

Definition at line 249 of file eos_bifluid.h.

References Lorene::Eos_bifluid::name.

int Lorene::Eos_bf_tabul::identify (  )  const [virtual]

Returns a number to identify the sub-classe of Eos the object belongs to.

Implements Lorene::Eos_bifluid.

Definition at line 105 of file eos_bf_file.C.

void Lorene::Eos_bf_tabul::interpol_2d_Tbl3d ( const int  i,
const int  j,
const int  k,
const Tbl ytab,
const Tbl ztab,
const Tbl ftab,
const Tbl dfdytab,
const Tbl dfdztab,
const Tbl d2fdydztab,
const double  y,
const double  z,
double &  f,
double &  dfdy,
double &  dfdz 
) const

Routine used by interpol_3d_bifluid to perform the 2D interpolation on the chemical potentials on each slice of constant $\Delta^2 $.

This method is based on the routine interpol_herm_2d but is adapted to the use of 3D tables.

Definition at line 1839 of file eos_bf_tabul.C.

References Lorene::Tbl::dim.

void Lorene::Eos_bf_tabul::interpol_3d_bifluid ( const double  delta2,
const double  mu1,
const double  mu2,
double &  press,
double &  nbar1,
double &  nbar2,
double &  alpha 
) const

General method computing the pressure, both baryon densities and alpha from the values of both chemical potentials and the relative speed at the point under consideration.

This routine uses the following 3D interpolation scheme from tabulated EoSs :

  • Hermite interpolation on the chemical potentials,
  • linear interpolation in the relative speed.
Parameters:
delta2 [input] the relative velocity field $\Delta^2 $
mu1 [input] chemical potential of $\mu_1$ of fluid 1
mu2 [input] chemical potential of $\mu_2$ of fluid 2
press [output] generalized pressure p
nbar1 [output] baryonic density of the first fluid
nbar2 [output] baryonic density of the second fluid
alpha [output] $\alpha$

Definition at line 1298 of file eos_bf_tabul.C.

References d2psdmu1dmu2_tab, delta_car_tab, dn1sddelta_car_tab, dn2sddelta_car_tab, dpsddelta_car_tab, interpol_2d_Tbl3d(), Lorene::Eos_bifluid::m_1, Lorene::Eos_bifluid::m_2, mu1_tab, mu2_tab, n1_tab, n2_tab, press_tab, and Lorene::Tbl::set_etat_zero().

void Lorene::Eos_bifluid::nbar_ent ( const Cmp ent1,
const Cmp ent2,
const Cmp delta2,
Cmp nbar1,
Cmp nbar2,
int  nzet,
int  l_min = 0 
) const [inherited]

Computes both baryon density fields from the log-enthalpy fields and the relative velocity.

Parameters:
ent1 [input, unit: $c^2$] log-enthalpy $H_1$
ent2 [input, unit: $c^2$] log-enthalpy $H_2$
delta2 [input, unit: $c^2$] relative velocity $\Delta^2$
nbar1 [output] baryonic density of the first fluid
nbar2 [output] baryonic density of the second fluid [unit: $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$]
nzet number of domains where the baryon density is to be computed.
l_min index of the innermost domain is which the baryon density is to be computed [default value: 0]; the baryon density is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.

Definition at line 416 of file eos_bifluid.C.

References Lorene::Cmp::allocate_all(), Lorene::Cmp::annule(), Lorene::Cmp::get_etat(), Lorene::Cmp::get_mp(), Lorene::Mg3d::get_nzone(), Lorene::Eos_bifluid::nbar_ent_p(), Lorene::Eos_bifluid::nbar_ent_p1(), Lorene::Eos_bifluid::nbar_ent_p2(), Lorene::Cmp::set(), and Lorene::Cmp::set_etat_zero().

bool Lorene::Eos_bf_tabul::nbar_ent_p ( const double  ent1,
const double  ent2,
const double  delta2,
double &  nbar1,
double &  nbar2 
) const [virtual]

Computes both baryon densities from the log-enthalpies.

Parameters:
ent1 [input, unit: $c^2$] log-enthalpy $H_1$
ent2 [input, unit: $c^2$] log-enthalpy $H_2$
delta2 [input, unit: $c^2$] relative velocity $ \Delta^2$
nbar1 [output] baryonic density of the first fluid
nbar2 [output] baryonic density of the second fluid [unit: $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$]

Implements Lorene::Eos_bifluid.

Definition at line 943 of file eos_bf_tabul.C.

References delta_car_max, delta_car_min, Lorene::exp(), interpol_3d_bifluid(), Lorene::Eos_bifluid::m_1, Lorene::Eos_bifluid::m_2, mu1_max, and mu2_max.

double Lorene::Eos_bf_tabul::nbar_ent_p1 ( const double  ent1  )  const [virtual]

Computes baryon density out of the log-enthalpy asuming that only fluid 1 is present.

Parameters:
ent1 [input, unit: $c^2$] log-enthalpy $H_1$
Returns:
nbar1 baryonic density of the first fluid

Implements Lorene::Eos_bifluid.

Definition at line 1009 of file eos_bf_tabul.C.

References Lorene::c_est_pas_fait().

double Lorene::Eos_bf_tabul::nbar_ent_p2 ( const double  ent2  )  const [virtual]

Computes baryon density out of the log-enthalpy assuming that only fluid 2 is present.

Parameters:
ent2 [input, unit: $c^2$] log-enthalpy $H_2$
Returns:
nbar2 baryonic density of the second fluid

Implements Lorene::Eos_bifluid.

Definition at line 1034 of file eos_bf_tabul.C.

References Lorene::c_est_pas_fait().

virtual bool Lorene::Eos_bifluid::operator!= ( const Eos_bifluid  )  const [pure virtual, inherited]

Comparison operator (difference).

bool Lorene::Eos_bf_tabul::operator!= ( const Eos_bifluid eos_i  )  const [virtual]

Comparison operator (difference).

Definition at line 267 of file eos_bf_tabul.C.

References operator==().

void Lorene::Eos_bf_tabul::operator= ( const Eos_bf_tabul eosi  )  [private]
virtual bool Lorene::Eos_bifluid::operator== ( const Eos_bifluid  )  const [pure virtual, inherited]

Comparison operator (egality).

bool Lorene::Eos_bf_tabul::operator== ( const Eos_bifluid eos_i  )  const [virtual]

Comparison operator (egality).

Definition at line 244 of file eos_bf_tabul.C.

References identify(), Lorene::Eos_bifluid::identify(), and tablename.

ostream & Lorene::Eos_bf_tabul::operator>> ( ostream &  ost  )  const [protected, virtual]

Operator >>.

Implements Lorene::Eos_bifluid.

Definition at line 229 of file eos_bf_tabul.C.

References tablename.

Cmp Lorene::Eos_bifluid::press_ent ( const Cmp ent1,
const Cmp ent2,
const Cmp delta2,
int  nzet,
int  l_min = 0 
) const [inherited]

Computes the pressure from the log-enthalpy fields and the relative velocity.

Parameters:
ent1 [input, unit: $c^2$] log-enthalpy $H_1$
ent2 [input, unit: $c^2$] log-enthalpy $H_2$
delta2 [input, unit: $c^2$] relative velocity $\Delta^2$
nzet number of domains where the pressure is to be computed.
l_min index of the innermost domain is which the pressure is to be computed [default value: 0]; the pressure is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
Returns:
pressure field [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Definition at line 584 of file eos_bifluid.C.

References Lorene::Cmp::get_etat(), Lorene::Map::get_mg(), Lorene::Cmp::get_mp(), Lorene::Mg3d::get_nzone(), Lorene::Eos_bifluid::nbar_ent_p(), Lorene::Eos_bifluid::nbar_ent_p1(), Lorene::Eos_bifluid::nbar_ent_p2(), and Lorene::Eos_bifluid::press_nbar_p().

double Lorene::Eos_bf_tabul::press_ent_p ( const double  ent1,
const double  ent2,
const double  delta_car 
) const [virtual]

Computes the pressure from the baryonic log-enthalpies and the relative velocity.

Computes the pressure from the log-enthalpy.

Parameters:
ent1 [input, unit: $c^2$] log-enthalpy $H_1$ of fluid 1
ent2 [input, unit: $c^2$] log-enthalpy $H_2$ of fluid 2
delta2 [input, unit: $c^2$] relative velocity $ \Delta^2$
Returns:
pressure p [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Definition at line 1087 of file eos_bf_tabul.C.

References delta_car_max, delta_car_min, Lorene::exp(), interpol_3d_bifluid(), Lorene::Eos_bifluid::m_1, Lorene::Eos_bifluid::m_2, mu1_max, and mu2_max.

double Lorene::Eos_bf_tabul::press_nbar_p ( const double  nbar1,
const double  nbar2,
const double  delta2 
) const [virtual]

Computes the pressure from the baryonic densities and the relative velocity.

Parameters:
nbar1 [input] baryonic density of the first fluid
nbar2 [input] baryonic density of the second fluid [unit: $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$]
delta2 [input, unit: $c^2$] relative velocity $\Delta^2$
Returns:
pressure p [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Implements Lorene::Eos_bifluid.

Definition at line 1073 of file eos_bf_tabul.C.

References Lorene::c_est_pas_fait().

void Lorene::Eos_bf_tabul::read_table (  )  [protected]

Reads the file containing the table and initializes the arrays mu1_tab, mu2_tab, delta_car_tab, press_tab, n1_tab, n2_tab, c\ d2psdmu1dmu2_tab , c\ dpsddelta_car_tab, c\ dn1sddelta_car_tab, c\ dn2sddelta_car_tab.

Definition at line 279 of file eos_bf_tabul.C.

References authors, d2psdmu1dmu2_tab, delta_car_max, delta_car_min, delta_car_tab, dn1sddelta_car_tab, dn2sddelta_car_tab, dpsddelta_car_tab, mu1_max, mu1_min, mu1_tab, mu2_max, mu2_min, mu2_tab, n1_tab, n2_tab, Lorene::pow(), press_tab, Lorene::Tbl::set(), Lorene::Tbl::set_etat_qcq(), and tablename.

void Lorene::Eos_bf_tabul::sauve ( FILE *  fich  )  const [virtual]

Save in a file.

Reimplemented from Lorene::Eos_bifluid.

Definition at line 218 of file eos_bf_tabul.C.

References tablename.

Eos * Lorene::Eos_bf_tabul::trans2Eos (  )  const [virtual]

Makes a translation from Eos_bifluid to Eos .

This is only useful for the construction of a Et_rot_bifluid star and ought not to be used in other situations.

Implements Lorene::Eos_bifluid.

Definition at line 1948 of file eos_bf_tabul.C.


Friends And Related Function Documentation

Eos_bifluid* Eos_bifluid::eos_from_file ( FILE *   )  [friend]

The construction functions from a file.

ostream& operator<< ( ostream &  ,
const Eos_bifluid  
) [friend, inherited]

Display.


Member Data Documentation

string Lorene::Eos_bf_tabul::authors [protected]

Authors.

Definition at line 1442 of file eos_bifluid.h.

Table of $ \frac {\partial^2 \Psi} {\partial \mu_n \partial \mu_p} = \frac {\partial n_n} {\partial \mu_p} = \frac {\partial n_p} {\partial \mu_n} $.

Definition at line 1481 of file eos_bifluid.h.

Upper boundary of the relative velocity interval.

Definition at line 1448 of file eos_bifluid.h.

Lower boundary of the relative velocity interval.

Definition at line 1445 of file eos_bifluid.h.

Table of $ \Delta^{2} $.

Definition at line 1469 of file eos_bifluid.h.

Table of $ \frac {\partial^2 \Psi} {\partial \mu_n \partial \Delta^{2}} = \frac{\partial n_n}{\partial \Delta^{2}} $.

Definition at line 1487 of file eos_bifluid.h.

Table of $ \frac {\partial^2 \Psi} {\partial \mu_p \partial \Delta^{2}} = \frac{\partial n_p}{\partial \Delta^{2}} $.

Definition at line 1490 of file eos_bifluid.h.

Table of $ \frac {\partial \Psi}{\partial \Delta^{2}} = - \alpha $.

Definition at line 1484 of file eos_bifluid.h.

double Lorene::Eos_bifluid::m_1 [protected, inherited]

Individual particle mass $m_1$ [unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$].

Definition at line 187 of file eos_bifluid.h.

double Lorene::Eos_bifluid::m_2 [protected, inherited]

Individual particle mass $m_2$ [unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$].

Definition at line 192 of file eos_bifluid.h.

double Lorene::Eos_bf_tabul::mu1_max [protected]

Upper boundary of the chemical-potential interval (fluid 1 = n).

Definition at line 1454 of file eos_bifluid.h.

double Lorene::Eos_bf_tabul::mu1_min [protected]

Lower boundary of the chemical-potential interval (fluid 1 = n).

Definition at line 1451 of file eos_bifluid.h.

Table of $ \mu_n $ where $ \mu_n = m_n * \exp ( H_n ) $.

Definition at line 1463 of file eos_bifluid.h.

double Lorene::Eos_bf_tabul::mu2_max [protected]

Upper boundary of the chemical-potential interval (fluid 2 = p).

Definition at line 1460 of file eos_bifluid.h.

double Lorene::Eos_bf_tabul::mu2_min [protected]

Lower boundary of the chemical-potential interval (fluid 2 = p).

Definition at line 1457 of file eos_bifluid.h.

Table of $ \mu_p $ where $ \mu_p = m_p * \exp ( H_p ) $.

Definition at line 1466 of file eos_bifluid.h.

Table of $ n_n = \frac {\partial \Psi} {\partial \mu_n} $.

Definition at line 1475 of file eos_bifluid.h.

Table of $ n_p = \frac {\partial \Psi} {\partial \mu_p} $.

Definition at line 1478 of file eos_bifluid.h.

string Lorene::Eos_bifluid::name [protected, inherited]

EOS name.

Definition at line 182 of file eos_bifluid.h.

Table of $ \Psi $.

Definition at line 1472 of file eos_bifluid.h.

string Lorene::Eos_bf_tabul::tablename [protected]

Name of the file containing the tabulated data (be careful, Eos_bifluid uses char*).

Definition at line 1439 of file eos_bifluid.h.


The documentation for this class was generated from the following files:

Generated on 7 Dec 2019 for LORENE by  doxygen 1.6.1