Lorene::Eos_bf_poly_newt Class Reference
[Equations of state]

Analytic equation of state for two fluids (Newtonian case). More...

#include <eos_bifluid.h>

Inheritance diagram for Lorene::Eos_bf_poly_newt:
Lorene::Eos_bf_poly Lorene::Eos_bifluid

List of all members.

Public Member Functions

 Eos_bf_poly_newt (double kappa1, double kappa2, double kappa3, double beta)
 Standard constructor.
 Eos_bf_poly_newt (double gamma1, double gamma2, double gamma3, double gamma4, double gamma5, double gamma6, double kappa1, double kappa2, double kappa3, double beta, double mass1, double mass2, double relax=0.5, double precis=1.e-9, double ecart=1.e-8)
 Standard constructor with all parameters.
 Eos_bf_poly_newt (const Eos_bf_poly_newt &)
 Copy constructor.
virtual ~Eos_bf_poly_newt ()
 Destructor.
void operator= (const Eos_bf_poly_newt &)
 Assignment to another Eos_bf_poly_newt.
virtual bool operator== (const Eos_bifluid &) const
 Comparison operator (egality).
virtual bool operator!= (const Eos_bifluid &) const
 Comparison operator (difference).
virtual int identify () const
 Returns a number to identify the sub-classe of Eos_bifluid the object belongs to.
virtual void sauve (FILE *) const
 Save in a file.
virtual bool nbar_ent_p (const double ent1, const double ent2, const double delta2, double &nbar1, double &nbar2) const
 Computes both baryon densities from the log-enthalpies.
virtual double nbar_ent_p1 (const double ent1) const
 Computes baryon density out of the log-enthalpy asuming that only fluid 1 is present (virtual function implemented in the derived classes).
virtual double nbar_ent_p2 (const double ent2) const
 Computes baryon density out of the log-enthalpy assuming that only fluid 2 is present.
virtual double ener_nbar_p (const double nbar1, const double nbar2, const double delta2) const
 Computes the total energy density from the baryonic densities and the relative velocity.
virtual double press_nbar_p (const double nbar1, const double nbar2, const double delta2) const
 Computes the pressure from the baryonic densities and the relative velocity.
virtual Eostrans2Eos () const
 Makes a translation from Eos_bifluid to Eos .
virtual double get_K11 (const double n1, const double n2, const double delta2) const
 Computes the derivative of the energy with respect to (baryonic density 1)$^2$.
virtual double get_K12 (const double n1, const double n2, const double delta2) const
 Computes the derivative of the energy with respect to $x^2=n_1n_2\Gamma_\Delta$.
virtual double get_K22 (const double n1, const double n2, const double delta2) const
 Computes the derivative of the energy/(baryonic density 2)$^2$.
virtual bool operator== (const Eos_bifluid &) const =0
 Comparison operator (egality).
virtual bool operator!= (const Eos_bifluid &) const =0
 Comparison operator (difference).
double get_gam1 () const
 Returns the adiabatic index $\gamma_1$.
double get_gam2 () const
 Returns the adiabatic index $\gamma_2$.
double get_gam3 () const
 Returns the adiabatic index $\gamma_3$.
double get_gam4 () const
 Returns the adiabatic index $\gamma_4$.
double get_gam5 () const
 Returns the adiabatic index $\gamma_5$.
double get_gam6 () const
 Returns the adiabatic index $\gamma_6$.
double get_kap1 () const
 Returns the pressure coefficient $\kappa_1$ [unit: $\rho_{\rm nuc} c^2 $], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$.
double get_kap2 () const
 Returns the pressure coefficient $\kappa_2$ [unit: $\rho_{\rm nuc} c^2 $], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$.
double get_kap3 () const
 Returns the pressure coefficient $\kappa_3$ [unit: $\rho_{\rm nuc} c^2 $], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$.
double get_beta () const
 Returns the coefficient $\beta$ [unit: $\rho_{\rm nuc} c^2 $], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$.
int get_typeos () const
string get_name () const
 Returns the EOS name.
double get_m1 () const
 Return the individual particule mass $m_1$.
double get_m2 () const
 Return the individual particule mass $m_2$.
virtual void calcule_tout (const Cmp &ent1, const Cmp &ent2, const Cmp &delta2, Cmp &nbar1, Cmp &nbar2, Cmp &ener, Cmp &press, int nzet, int l_min=0) const
 General computational method for Cmp 's, it computes both baryon densities, energy and pressure profiles.
void nbar_ent (const Cmp &ent1, const Cmp &ent2, const Cmp &delta2, Cmp &nbar1, Cmp &nbar2, int nzet, int l_min=0) const
 Computes both baryon density fields from the log-enthalpy fields and the relative velocity.
Cmp ener_ent (const Cmp &ent1, const Cmp &ent2, const Cmp &delta2, int nzet, int l_min=0) const
 Computes the total energy density from the log-enthalpy fields and the relative velocity.
Cmp press_ent (const Cmp &ent1, const Cmp &ent2, const Cmp &delta2, int nzet, int l_min=0) const
 Computes the pressure from the log-enthalpy fields and the relative velocity.
Cmp get_Knn (const Cmp &nbar1, const Cmp &nbar2, const Cmp &x2, int nzet, int l_min=0) const
 Computes the derivatives of the energy/(baryonic density 1)$^2$.
Cmp get_Kpp (const Cmp &nbar1, const Cmp &nbar2, const Cmp &x2, int nzet, int l_min=0) const
 Computes the derivatives of the energy/(baryonic density 2)$^2$.
Cmp get_Knp (const Cmp &nbar1, const Cmp &nbar2, const Cmp &x2, int nzet, int l_min=0) const
 Computes the derivatives of the energy with respect to $x^2=n_1n_2\Gamma_\Delta^2$.
void calcule (const Cmp &nbar1, const Cmp &nbar2, const Cmp &x2, int nzet, int l_min, double(Eos_bifluid::*fait)(double, double, double) const, Cmp &resu) const
 General computational method for Cmp 's ($K^{ij}$'s).

Static Public Member Functions

static Eos_bifluideos_from_file (FILE *)
 Construction of an EOS from a binary file.
static Eos_bifluideos_from_file (const char *fname)
 Construction of an EOS from a formatted file.
static Eos_bifluideos_from_file (ifstream &)
 Construction of an EOS from a formatted file.

Protected Member Functions

 Eos_bf_poly_newt (FILE *)
 Constructor from a binary file (created by the function sauve(FILE*) ).
 Eos_bf_poly_newt (const char *fname)
 Constructor from a formatted file.
virtual ostream & operator>> (ostream &) const
 Operator >>.
void set_auxiliary ()
 Computes the auxiliary quantities gam1m1 , gam2m1 and gam3m1.
void determine_type ()
 Determines the type of the analytical EOS (see typeos ).

Protected Attributes

double gam1
 Adiabatic indexes $\gamma_1$, see Eq.~eeosbfpolye}.
double gam2
 Adiabatic indexes $\gamma_2$, see Eq.~eeosbfpolye}.
double gam3
 Adiabatic indexes $\gamma_3$, see Eq.~eeosbfpolye}.
double gam4
 Adiabatic indexes $\gamma_4$, see Eq.~eeosbfpolye}.
double gam5
 Adiabatic indexes $\gamma_5$, see Eq.~eeosbfpolye}.
double gam6
 Adiabatic indexes $\gamma_6$, see Eq.~eeosbfpolye}.
double kap1
 Pressure coefficient $\kappa_1$ , see Eq.
double kap2
 Pressure coefficient $\kappa_2$ , see Eq.
double kap3
 Pressure coefficient $\kappa_3$ , see Eq.
double beta
 Coefficient $\beta$ , see Eq.
double gam1m1
 $\gamma_1-1$
double gam2m1
 $\gamma_2-1$
double gam34m1
 $\gamma_3+\gamma_4-1$
double gam56m1
 $\gamma_5+\gamma_6-1$
int typeos
 The bi-fluid analytical EOS type:.
double relax
 Parameters needed for some inversions of the EOS.
double precis
 contains the precision required in zerosec_b
double ecart
 contains the precision required in the relaxation nbar_ent_p
string name
 EOS name.
double m_1
 Individual particle mass $m_1$ [unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$].
double m_2
 Individual particle mass $m_2$ [unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$].

Friends

Eos_bifluidEos_bifluid::eos_from_file (FILE *)
 The construction functions from a file.
Eos_bifluidEos_bifluid::eos_from_file (const char *fname)
ostream & operator<< (ostream &, const Eos_bifluid &)
 Display.

Detailed Description

Analytic equation of state for two fluids (Newtonian case).

This equation of state (EOS) corresponds to two types of non-relativistic particles of rest mass is $m_1$ and $m_2$, whose total energy density $\cal{E}$ is related to their numerical densities $n_1$, $n_2$ and relative velocity $\Delta^2$

\[ \Delta = \left( \vec{v}_n - \vec{v}_p \right)^2 \label{e:defdeltan} \]

by

\[ \label{eeosbfnewte} {\cal{E}} = \frac{1}{2}\kappa_1 n_1^{\gamma_1} \ + \frac{1}{2}\kappa_2 n_2^{\gamma_2} \ + \kappa_3 n_1^{\gamma_3} n_2^{\gamma_4} \ + \Delta^2 \beta n_1^{\gamma_5} n_2^{\gamma_6}\ . \]

The non-relativistic chemical potentials are then

\[ \mu_1 := {{\rm d}{\cal{E}} \over {\rm d}n_1} = \frac{1}{2}\gamma_1\kappa_1 n_1^{\gamma_1-1} + \gamma_3 \kappa_3 n_1^{\gamma_3-1} n_2^{\gamma_4} + \Delta^2 \gamma_5 \beta n_1^{\gamma_5-1} n_2^{\gamma_6}\ , \]

\[ \mu_2 := {{\rm d}{\cal{E}} \over {\rm d}n_2} = \frac{1}{2}\gamma_2\kappa_2 n_2^{\gamma_2-1} + \gamma_4 \kappa_3 n_1^{\gamma_3} n_2^{\gamma_4-1} + \Delta^2 \gamma_6 \beta n_1^{\gamma_5} n_2^{\gamma_6-1} \ . \]

The pressure is given by the (zero-temperature) First Law of Thermodynamics: $p = \mu_1 n_1 + \mu_2 n_2 - {\cal E}$, so that

\[ p = \frac{1}{2} (\gamma_1 -1)\kappa_1 n_1^{\gamma_1} + \frac{1}{2}(\gamma_2-1)\kappa_2 n_2^{\gamma_2} + (\gamma_3 +\gamma_4 -1)\kappa_3 n_1^{\gamma_3}n_2^{\gamma_4} + \Delta^2 \beta \left( (\gamma_5 + \gamma_6 - 1) n_1^{\gamma_5} n_2^{\gamma_6} \right) \ . \]

The specific enthalpies are related to the chemical potentials by

\[ h_i = \frac{\mu_i}{m_i} \]

From this system, the particle densities are obtained in term of the enthalpies. (The system is a linear one if $\gamma_1 = \gamma_2 = 2$ and $\gamma_3 = \gamma_4 = \gamma_5 = \gamma_6 = 1$). ()

The energy density $\cal E$and pressure p can then be obtained.

Definition at line 1157 of file eos_bifluid.h.


Constructor & Destructor Documentation

Lorene::Eos_bf_poly_newt::Eos_bf_poly_newt ( double  kappa1,
double  kappa2,
double  kappa3,
double  beta 
)

Standard constructor.

The adiabatic indexes $\gamma_1$ and $\gamma_2$ are set to 2. All other adiabatic indexes $\gamma_i$, $i\in 3\dots 6$ are set to 1. The individual particle masses $m_1$ and $m_2$ are set to the mean baryon mass $m_B = 1.66\ 10^{-27} \ {\rm kg}$. The inversion parameters are set to their default values (see hereafter the consrtuctor with all parameters).

Parameters:
kappa1 pressure coefficient $\kappa_1$
kappa2 pressure coefficient $\kappa_2$
kappa3 pressure coefficient $\kappa_3$
beta coefficient in the entrainment term $\beta$ (cf. Eq.~(eeosbfpolye})) [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Definition at line 120 of file eos_bf_poly_newt.C.

References Lorene::Eos_bifluid::name.

Lorene::Eos_bf_poly_newt::Eos_bf_poly_newt ( double  gamma1,
double  gamma2,
double  gamma3,
double  gamma4,
double  gamma5,
double  gamma6,
double  kappa1,
double  kappa2,
double  kappa3,
double  beta,
double  mass1,
double  mass2,
double  relax = 0.5,
double  precis = 1.e-9,
double  ecart = 1.e-8 
)

Standard constructor with all parameters.

Parameters:
gamma1 adiabatic index $\gamma_1$
gamma2 adiabatic index $\gamma_2$
gamma3 adiabatic index $\gamma_3$
gamma4 adiabatic index $\gamma_4$
gamma5 adiabatic index $\gamma_5$
gamma6 adiabatic index $\gamma_6$ (cf. Eq.~(eeosbfpolye}))
kappa1 pressure coefficient $\kappa_1$
kappa2 pressure coefficient $\kappa_2$
kappa3 pressure coefficient $\kappa_3$
beta coefficient in the entrainment term $\beta$ (cf. Eq.~(eeosbfpolye})) [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$
mass1 individual particule mass $m_1$ (neutrons)
mass2 individual particule mass $m_2$ (protons)
relax relaxation parameter (see par_inv)
precis precision parameter for zerosec_b (see par_inv)
relax precision parameter for relaxation procedure (see par_inv)

[unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$]

Definition at line 128 of file eos_bf_poly_newt.C.

References Lorene::Eos_bifluid::name.

Lorene::Eos_bf_poly_newt::Eos_bf_poly_newt ( const Eos_bf_poly_newt eosi  ) 

Copy constructor.

Definition at line 141 of file eos_bf_poly_newt.C.

Lorene::Eos_bf_poly_newt::Eos_bf_poly_newt ( FILE *  fich  )  [protected]

Constructor from a binary file (created by the function sauve(FILE*) ).

This constructor is protected because any EOS construction from a binary file must be done via the function Eos_bifluid::eos_from_file(FILE*) .

Definition at line 147 of file eos_bf_poly_newt.C.

Lorene::Eos_bf_poly_newt::Eos_bf_poly_newt ( const char *  fname  )  [protected]

Constructor from a formatted file.

This constructor is protected because any EOS construction from a formatted file must be done via the function Eos_bifluid::eos_from_file(const char* ) .

Definition at line 152 of file eos_bf_poly_newt.C.

Lorene::Eos_bf_poly_newt::~Eos_bf_poly_newt (  )  [virtual]

Destructor.

Definition at line 159 of file eos_bf_poly_newt.C.


Member Function Documentation

void Lorene::Eos_bifluid::calcule ( const Cmp nbar1,
const Cmp nbar2,
const Cmp x2,
int  nzet,
int  l_min,
double(Eos_bifluid::*)(double, double, double) const   fait,
Cmp resu 
) const [inherited]

General computational method for Cmp 's ($K^{ij}$'s).

Parameters:
nbar1 [input, unit $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryonic density field of fluid 1 at which the derivatives are to be computed.
nbar2 [input, unit $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryonic density field of fluid 2 at which the derivatives are to be computed
x2 [input, unit $n_{\rm nuc}^2c^2$] relative velocity$\times$both densities at which the derivative is to be computed
nzet [input] number of domains where resu is to be computed.
l_min [input] index of the innermost domain is which resu is to be computed [default value: 0]; resu is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
fait [input] pointer on the member function of class Eos_bifluid which performs the pointwise calculation.
resu [output] result of the computation.

Definition at line 661 of file eos_bifluid.C.

References Lorene::Cmp::annule(), Lorene::Valeur::c, Lorene::Valeur::coef_i(), Lorene::Tbl::get_etat(), Lorene::Cmp::get_etat(), Lorene::Cmp::get_mp(), Lorene::Mg3d::get_nzone(), Lorene::Tbl::get_taille(), Lorene::Valeur::set_etat_c_qcq(), Lorene::Tbl::set_etat_qcq(), Lorene::Mtbl::set_etat_qcq(), Lorene::Cmp::set_etat_qcq(), Lorene::Cmp::set_etat_zero(), Lorene::Tbl::t, Lorene::Mtbl::t, and Lorene::Cmp::va.

void Lorene::Eos_bifluid::calcule_tout ( const Cmp ent1,
const Cmp ent2,
const Cmp delta2,
Cmp nbar1,
Cmp nbar2,
Cmp ener,
Cmp press,
int  nzet,
int  l_min = 0 
) const [virtual, inherited]

General computational method for Cmp 's, it computes both baryon densities, energy and pressure profiles.

Parameters:
ent1 [input] the first log-enthalpy field $H_1$.
ent2 [input] the second log-enthalpy field $H_2$.
delta2 [input] the relative velocity field $\Delta^2 $
nbar1 [output] baryonic density of the first fluid
nbar2 [output] baryonic density of the second fluid [unit: $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$]
ener [output] total energy density $\cal E$ of both fluids together
press [output] pressure p of both fluids together
nzet [input] number of domains where resu is to be computed.
l_min [input] index of the innermost domain is which resu is to be computed [default value: 0]; resu is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.

Definition at line 286 of file eos_bifluid.C.

References Lorene::Cmp::allocate_all(), Lorene::Cmp::annule(), Lorene::Eos_bifluid::ener_nbar_p(), Lorene::Cmp::get_etat(), Lorene::Cmp::get_mp(), Lorene::Mg3d::get_nzone(), Lorene::Eos_bifluid::identify(), Lorene::Eos_bifluid::nbar_ent_p(), Lorene::Eos_bifluid::nbar_ent_p1(), Lorene::Eos_bifluid::nbar_ent_p2(), Lorene::Eos_bifluid::press_nbar_p(), Lorene::Cmp::set(), and Lorene::Cmp::set_etat_zero().

void Lorene::Eos_bf_poly::determine_type (  )  [protected, inherited]
Cmp Lorene::Eos_bifluid::ener_ent ( const Cmp ent1,
const Cmp ent2,
const Cmp delta2,
int  nzet,
int  l_min = 0 
) const [inherited]

Computes the total energy density from the log-enthalpy fields and the relative velocity.

Parameters:
ent1 [input, unit: $c^2$] log-enthalpy $H_1$
ent2 [input, unit: $c^2$] log-enthalpy $H_2$
delta2 [input, unit: $c^2$] relative velocity $\Delta^2$
nzet number of domains where the energy density is to be computed.
l_min index of the innermost domain is which the energy density is to be computed [default value: 0]; the energy density is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
Returns:
energy density field [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Definition at line 504 of file eos_bifluid.C.

References Lorene::Eos_bifluid::ener_nbar_p(), Lorene::Cmp::get_etat(), Lorene::Map::get_mg(), Lorene::Cmp::get_mp(), Lorene::Mg3d::get_nzone(), Lorene::Eos_bifluid::nbar_ent_p(), Lorene::Eos_bifluid::nbar_ent_p1(), and Lorene::Eos_bifluid::nbar_ent_p2().

double Lorene::Eos_bf_poly_newt::ener_nbar_p ( const double  nbar1,
const double  nbar2,
const double  delta2 
) const [virtual]

Computes the total energy density from the baryonic densities and the relative velocity.

Parameters:
nbar1 [input] baryonic density of the first fluid
nbar2 [input] baryonic density of the second fluid [unit: $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$]
delta2 [input, unit: $c^2$] relative velocity $\Delta^2$
Returns:
energy density $\cal E$ [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Reimplemented from Lorene::Eos_bf_poly.

Definition at line 667 of file eos_bf_poly_newt.C.

References Lorene::Eos_bf_poly::beta, Lorene::Eos_bf_poly::gam1, Lorene::Eos_bf_poly::gam2, Lorene::Eos_bf_poly::gam3, Lorene::Eos_bf_poly::gam4, Lorene::Eos_bf_poly::gam5, Lorene::Eos_bf_poly::gam6, Lorene::Eos_bf_poly::kap1, Lorene::Eos_bf_poly::kap2, Lorene::Eos_bf_poly::kap3, and Lorene::pow().

Eos_bifluid * Lorene::Eos_bifluid::eos_from_file ( ifstream &  fich  )  [static, inherited]

Construction of an EOS from a formatted file.

The fist line of the file must start by the EOS number, according to the following conventions:

  • 1 = 2-fluid relativistic polytropic EOS (class Eos_bf_poly ).
  • 2 = 2-fluid Newtonian polytropic EOS (class Eos_bf_poly_newt ).
  • 3 = 2-fluid tabulated EOS (class Eos_bf_tabul). The second line in the file should contain a name given by the user to the EOS. The following lines should contain the EOS parameters (one parameter per line), in the same order than in the class declaration.

Definition at line 190 of file eos_bf_file.C.

Eos_bifluid * Lorene::Eos_bifluid::eos_from_file ( const char *  fname  )  [static, inherited]

Construction of an EOS from a formatted file.

The following field has to be present:\ ident: [int] identifying the type of 2-fluid EOS 1 = relativistic polytropic EOS (class Eos_bf_poly ). \ 2 = Newtonian polytropic EOS (class Eos_bf_poly_newt ).

Definition at line 148 of file eos_bf_file.C.

References Lorene::read_variable().

Eos_bifluid * Lorene::Eos_bifluid::eos_from_file ( FILE *  fich  )  [static, inherited]

Construction of an EOS from a binary file.

The file must have been created by the function sauve(FILE*) .

Definition at line 111 of file eos_bf_file.C.

References Lorene::fread_be().

double Lorene::Eos_bf_poly::get_beta (  )  const [inline, inherited]

Returns the coefficient $\beta$ [unit: $\rho_{\rm nuc} c^2 $], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$.

Definition at line 949 of file eos_bifluid.h.

References Lorene::Eos_bf_poly::beta.

double Lorene::Eos_bf_poly::get_gam1 (  )  const [inline, inherited]

Returns the adiabatic index $\gamma_1$.

Definition at line 910 of file eos_bifluid.h.

References Lorene::Eos_bf_poly::gam1.

double Lorene::Eos_bf_poly::get_gam2 (  )  const [inline, inherited]

Returns the adiabatic index $\gamma_2$.

Definition at line 913 of file eos_bifluid.h.

References Lorene::Eos_bf_poly::gam2.

double Lorene::Eos_bf_poly::get_gam3 (  )  const [inline, inherited]

Returns the adiabatic index $\gamma_3$.

Definition at line 916 of file eos_bifluid.h.

References Lorene::Eos_bf_poly::gam3.

double Lorene::Eos_bf_poly::get_gam4 (  )  const [inline, inherited]

Returns the adiabatic index $\gamma_4$.

Definition at line 919 of file eos_bifluid.h.

References Lorene::Eos_bf_poly::gam4.

double Lorene::Eos_bf_poly::get_gam5 (  )  const [inline, inherited]

Returns the adiabatic index $\gamma_5$.

Definition at line 922 of file eos_bifluid.h.

References Lorene::Eos_bf_poly::gam5.

double Lorene::Eos_bf_poly::get_gam6 (  )  const [inline, inherited]

Returns the adiabatic index $\gamma_6$.

Definition at line 925 of file eos_bifluid.h.

References Lorene::Eos_bf_poly::gam6.

double Lorene::Eos_bf_poly_newt::get_K11 ( const double  n1,
const double  n2,
const double  delta2 
) const [virtual]

Computes the derivative of the energy with respect to (baryonic density 1)$^2$.

Parameters:
n1 [input, unit $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryonic density of fluid 1 at which the derivative is to be computed
n2 [input, unit $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryonic density of fluid 2 at which the derivative is to be computed
x [input, unit $n_{\rm nuc}^2c^2$] relative Lorentz factor$\times$both densities at which the derivative is to be computed
Returns:
derivative $K^{11}=2\frac{\partial{\cal{E}}}{\partial{n_1^2}}$

Reimplemented from Lorene::Eos_bf_poly.

Definition at line 703 of file eos_bf_poly_newt.C.

References Lorene::Eos_bf_poly::beta, Lorene::Eos_bf_poly::gam5, Lorene::Eos_bf_poly::gam6, Lorene::Eos_bifluid::m_1, and Lorene::pow().

double Lorene::Eos_bf_poly_newt::get_K12 ( const double  n1,
const double  n2,
const double  delta2 
) const [virtual]

Computes the derivative of the energy with respect to $x^2=n_1n_2\Gamma_\Delta$.

Parameters:
n1 [input, unit $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryonic density of fluid 1 at which the derivative is to be computed
n2 [input, unit $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryonic density of fluid 2 at which the derivative is to be computed
x [input, unit $n_{\rm nuc}^2c^2$] relative Lorentz factor$\times$both densities at which the derivative is to be computed
Returns:
derivative $K^{12}=\frac{\partial {\cal E}}{\partial (n_1n_2\Gamma_\Delta)}$

Reimplemented from Lorene::Eos_bf_poly.

Definition at line 723 of file eos_bf_poly_newt.C.

References Lorene::Eos_bf_poly::beta, Lorene::Eos_bf_poly::gam5, Lorene::Eos_bf_poly::gam6, and Lorene::pow().

double Lorene::Eos_bf_poly_newt::get_K22 ( const double  n1,
const double  n2,
const double  delta2 
) const [virtual]

Computes the derivative of the energy/(baryonic density 2)$^2$.

Parameters:
n1 [input, unit $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryonic density of fluid 1 at which the derivative is to be computed
n2 [input, unit $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryonic density of fluid 2 at which the derivative is to be computed
x [input, unit $n_{\rm nuc}^2c^2$] relative Lorentz factor$\times$both densities at which the derivative is to be computed
Returns:
derivative $K^{22} = 2\frac{\partial {\cal E}}{\partial n_2^2}$

Reimplemented from Lorene::Eos_bf_poly.

Definition at line 713 of file eos_bf_poly_newt.C.

References Lorene::Eos_bf_poly::beta, Lorene::Eos_bf_poly::gam5, Lorene::Eos_bf_poly::gam6, Lorene::Eos_bifluid::m_2, and Lorene::pow().

double Lorene::Eos_bf_poly::get_kap1 (  )  const [inline, inherited]

Returns the pressure coefficient $\kappa_1$ [unit: $\rho_{\rm nuc} c^2 $], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$.

Definition at line 931 of file eos_bifluid.h.

References Lorene::Eos_bf_poly::kap1.

double Lorene::Eos_bf_poly::get_kap2 (  )  const [inline, inherited]

Returns the pressure coefficient $\kappa_2$ [unit: $\rho_{\rm nuc} c^2 $], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$.

Definition at line 937 of file eos_bifluid.h.

References Lorene::Eos_bf_poly::kap2.

double Lorene::Eos_bf_poly::get_kap3 (  )  const [inline, inherited]

Returns the pressure coefficient $\kappa_3$ [unit: $\rho_{\rm nuc} c^2 $], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$.

Definition at line 943 of file eos_bifluid.h.

References Lorene::Eos_bf_poly::kap3.

Cmp Lorene::Eos_bifluid::get_Knn ( const Cmp nbar1,
const Cmp nbar2,
const Cmp x2,
int  nzet,
int  l_min = 0 
) const [inherited]

Computes the derivatives of the energy/(baryonic density 1)$^2$.

Parameters:
nbar1 [input, unit $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryonic density field of fluid 1 at which the derivatives are to be computed
nbar2 [input, unit $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryonic density field of fluid 2 at which the derivatives are to be computed
x2 [input, unit $n_{\rm nuc}^2c^2$] relative velocity$\times$both densities at which the derivative is to be computed
nzet number of domains where the derivatives are to be computed.
l_min index of the innermost domain is which the derivatives are to be computed [default value: 0]; the derivatives are computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
Returns:
derivative $K^{11}$ field (see get_K11 )

Definition at line 750 of file eos_bifluid.C.

References Lorene::Eos_bifluid::calcule(), Lorene::Eos_bifluid::get_K11(), and Lorene::Cmp::get_mp().

Cmp Lorene::Eos_bifluid::get_Knp ( const Cmp nbar1,
const Cmp nbar2,
const Cmp x2,
int  nzet,
int  l_min = 0 
) const [inherited]

Computes the derivatives of the energy with respect to $x^2=n_1n_2\Gamma_\Delta^2$.

Parameters:
nbar1 [input, unit $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryonic density field of fluid 1 at which the derivatives are to be computed
nbar2 [input, unit $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryonic density field of fluid 2 at which the derivatives are to be computed
x2 [input, unit $n_{\rm nuc}^2c^2$] relative velocity$\times$both densities at which the derivative is to be computed
nzet number of domains where the derivatives are to be computed.
l_min index of the innermost domain is which the derivatives are to be computed [default value: 0]; the derivatives are computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
Returns:
derivative $K^{12}$ field (see get_K12 )

Definition at line 761 of file eos_bifluid.C.

References Lorene::Eos_bifluid::calcule(), Lorene::Eos_bifluid::get_K12(), and Lorene::Cmp::get_mp().

Cmp Lorene::Eos_bifluid::get_Kpp ( const Cmp nbar1,
const Cmp nbar2,
const Cmp x2,
int  nzet,
int  l_min = 0 
) const [inherited]

Computes the derivatives of the energy/(baryonic density 2)$^2$.

Parameters:
nbar1 [input, unit $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryonic density field of fluid 1 at which the derivatives are to be computed
nbar2 [input, unit $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryonic density field of fluid 2 at which the derivatives are to be computed
x2 [input, unit $n_{\rm nuc}^2c^2$] relative velocity$\times$both densities at which the derivative is to be computed
nzet number of domains where the derivatives are to be computed.
l_min index of the innermost domain is which the derivatives are to be computed [default value: 0]; the derivatives are computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
Returns:
derivative $K^{22}$ field (see get_K12 )

Definition at line 772 of file eos_bifluid.C.

References Lorene::Eos_bifluid::calcule(), Lorene::Eos_bifluid::get_K22(), and Lorene::Cmp::get_mp().

double Lorene::Eos_bifluid::get_m1 (  )  const [inline, inherited]

Return the individual particule mass $m_1$.

[unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$].

Definition at line 259 of file eos_bifluid.h.

References Lorene::Eos_bifluid::m_1.

double Lorene::Eos_bifluid::get_m2 (  )  const [inline, inherited]

Return the individual particule mass $m_2$.

[unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$].

Definition at line 265 of file eos_bifluid.h.

References Lorene::Eos_bifluid::m_2.

string Lorene::Eos_bifluid::get_name (  )  const [inline, inherited]

Returns the EOS name.

Definition at line 249 of file eos_bifluid.h.

References Lorene::Eos_bifluid::name.

int Lorene::Eos_bf_poly_newt::identify (  )  const [virtual]

Returns a number to identify the sub-classe of Eos_bifluid the object belongs to.

Reimplemented from Lorene::Eos_bf_poly.

Definition at line 103 of file eos_bf_file.C.

void Lorene::Eos_bifluid::nbar_ent ( const Cmp ent1,
const Cmp ent2,
const Cmp delta2,
Cmp nbar1,
Cmp nbar2,
int  nzet,
int  l_min = 0 
) const [inherited]

Computes both baryon density fields from the log-enthalpy fields and the relative velocity.

Parameters:
ent1 [input, unit: $c^2$] log-enthalpy $H_1$
ent2 [input, unit: $c^2$] log-enthalpy $H_2$
delta2 [input, unit: $c^2$] relative velocity $\Delta^2$
nbar1 [output] baryonic density of the first fluid
nbar2 [output] baryonic density of the second fluid [unit: $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$]
nzet number of domains where the baryon density is to be computed.
l_min index of the innermost domain is which the baryon density is to be computed [default value: 0]; the baryon density is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.

Definition at line 416 of file eos_bifluid.C.

References Lorene::Cmp::allocate_all(), Lorene::Cmp::annule(), Lorene::Cmp::get_etat(), Lorene::Cmp::get_mp(), Lorene::Mg3d::get_nzone(), Lorene::Eos_bifluid::nbar_ent_p(), Lorene::Eos_bifluid::nbar_ent_p1(), Lorene::Eos_bifluid::nbar_ent_p2(), Lorene::Cmp::set(), and Lorene::Cmp::set_etat_zero().

bool Lorene::Eos_bf_poly_newt::nbar_ent_p ( const double  ent1,
const double  ent2,
const double  delta2,
double &  nbar1,
double &  nbar2 
) const [virtual]
double Lorene::Eos_bf_poly_newt::nbar_ent_p1 ( const double  ent1  )  const [virtual]

Computes baryon density out of the log-enthalpy asuming that only fluid 1 is present (virtual function implemented in the derived classes).

Parameters:
ent1 [input, unit: $c^2$] log-enthalpy $H_1$
Returns:
nbar1 baryonic density of the first fluid

Reimplemented from Lorene::Eos_bf_poly.

Definition at line 656 of file eos_bf_poly_newt.C.

References Lorene::Eos_bf_poly::gam1, Lorene::Eos_bf_poly::gam1m1, Lorene::Eos_bf_poly::kap1, and Lorene::Eos_bifluid::m_1.

double Lorene::Eos_bf_poly_newt::nbar_ent_p2 ( const double  ent2  )  const [virtual]

Computes baryon density out of the log-enthalpy assuming that only fluid 2 is present.

Parameters:
ent2 [input, unit: $c^2$] log-enthalpy $H_1$
Returns:
nbar1 baryonic density of the first fluid

Reimplemented from Lorene::Eos_bf_poly.

Definition at line 660 of file eos_bf_poly_newt.C.

References Lorene::Eos_bf_poly::gam2, Lorene::Eos_bf_poly::gam2m1, Lorene::Eos_bf_poly::kap2, and Lorene::Eos_bifluid::m_2.

virtual bool Lorene::Eos_bifluid::operator!= ( const Eos_bifluid  )  const [pure virtual, inherited]

Comparison operator (difference).

bool Lorene::Eos_bf_poly_newt::operator!= ( const Eos_bifluid eos_i  )  const [virtual]

Comparison operator (difference).

Reimplemented from Lorene::Eos_bf_poly.

Definition at line 235 of file eos_bf_poly_newt.C.

References operator==().

void Lorene::Eos_bf_poly_newt::operator= ( const Eos_bf_poly_newt eosi  ) 

Assignment to another Eos_bf_poly_newt.

Reimplemented from Lorene::Eos_bf_poly.

Definition at line 168 of file eos_bf_poly_newt.C.

virtual bool Lorene::Eos_bifluid::operator== ( const Eos_bifluid  )  const [pure virtual, inherited]

Comparison operator (egality).

bool Lorene::Eos_bf_poly_newt::operator== ( const Eos_bifluid eos_i  )  const [virtual]
ostream & Lorene::Eos_bf_poly_newt::operator>> ( ostream &  ost  )  const [protected, virtual]
Cmp Lorene::Eos_bifluid::press_ent ( const Cmp ent1,
const Cmp ent2,
const Cmp delta2,
int  nzet,
int  l_min = 0 
) const [inherited]

Computes the pressure from the log-enthalpy fields and the relative velocity.

Parameters:
ent1 [input, unit: $c^2$] log-enthalpy $H_1$
ent2 [input, unit: $c^2$] log-enthalpy $H_2$
delta2 [input, unit: $c^2$] relative velocity $\Delta^2$
nzet number of domains where the pressure is to be computed.
l_min index of the innermost domain is which the pressure is to be computed [default value: 0]; the pressure is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
Returns:
pressure field [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Definition at line 584 of file eos_bifluid.C.

References Lorene::Cmp::get_etat(), Lorene::Map::get_mg(), Lorene::Cmp::get_mp(), Lorene::Mg3d::get_nzone(), Lorene::Eos_bifluid::nbar_ent_p(), Lorene::Eos_bifluid::nbar_ent_p1(), Lorene::Eos_bifluid::nbar_ent_p2(), and Lorene::Eos_bifluid::press_nbar_p().

double Lorene::Eos_bf_poly_newt::press_nbar_p ( const double  nbar1,
const double  nbar2,
const double  delta2 
) const [virtual]

Computes the pressure from the baryonic densities and the relative velocity.

Parameters:
nbar1 [input] baryonic density of the first fluid
nbar2 [input] baryonic density of the second fluid [unit: $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$]
delta2 [input, unit: $c^2$] relative velocity $\Delta^2$
Returns:
pressure p [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Reimplemented from Lorene::Eos_bf_poly.

Definition at line 685 of file eos_bf_poly_newt.C.

References Lorene::Eos_bf_poly::beta, Lorene::Eos_bf_poly::gam1, Lorene::Eos_bf_poly::gam1m1, Lorene::Eos_bf_poly::gam2, Lorene::Eos_bf_poly::gam2m1, Lorene::Eos_bf_poly::gam3, Lorene::Eos_bf_poly::gam34m1, Lorene::Eos_bf_poly::gam4, Lorene::Eos_bf_poly::gam5, Lorene::Eos_bf_poly::gam56m1, Lorene::Eos_bf_poly::gam6, Lorene::Eos_bf_poly::kap1, Lorene::Eos_bf_poly::kap2, Lorene::Eos_bf_poly::kap3, and Lorene::pow().

void Lorene::Eos_bf_poly_newt::sauve ( FILE *  fich  )  const [virtual]

Save in a file.

Reimplemented from Lorene::Eos_bf_poly.

Definition at line 246 of file eos_bf_poly_newt.C.

void Lorene::Eos_bf_poly::set_auxiliary (  )  [protected, inherited]
Eos * Lorene::Eos_bf_poly_newt::trans2Eos (  )  const [virtual]

Makes a translation from Eos_bifluid to Eos .

This is only useful for the construction of a Et_rot_bifluid star and ought not to be used in other situations.

Reimplemented from Lorene::Eos_bf_poly.

Definition at line 736 of file eos_bf_poly_newt.C.

References Lorene::Eos_bf_poly::gam1, and Lorene::Eos_bf_poly::kap1.


Friends And Related Function Documentation

Eos_bifluid* Eos_bifluid::eos_from_file ( FILE *   )  [friend]

The construction functions from a file.

Reimplemented from Lorene::Eos_bf_poly.

ostream& operator<< ( ostream &  ,
const Eos_bifluid  
) [friend, inherited]

Display.


Member Data Documentation

double Lorene::Eos_bf_poly::beta [protected, inherited]

Coefficient $\beta$ , see Eq.

~eeosbfpolye} [unit: $\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$ and $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$.

Definition at line 763 of file eos_bifluid.h.

double Lorene::Eos_bf_poly::ecart [protected, inherited]

contains the precision required in the relaxation nbar_ent_p

Definition at line 803 of file eos_bifluid.h.

double Lorene::Eos_bf_poly::gam1 [protected, inherited]

Adiabatic indexes $\gamma_1$, see Eq.~eeosbfpolye}.

Definition at line 720 of file eos_bifluid.h.

double Lorene::Eos_bf_poly::gam1m1 [protected, inherited]

$\gamma_1-1$

Definition at line 765 of file eos_bifluid.h.

double Lorene::Eos_bf_poly::gam2 [protected, inherited]

Adiabatic indexes $\gamma_2$, see Eq.~eeosbfpolye}.

Definition at line 723 of file eos_bifluid.h.

double Lorene::Eos_bf_poly::gam2m1 [protected, inherited]

$\gamma_2-1$

Definition at line 766 of file eos_bifluid.h.

double Lorene::Eos_bf_poly::gam3 [protected, inherited]

Adiabatic indexes $\gamma_3$, see Eq.~eeosbfpolye}.

Definition at line 726 of file eos_bifluid.h.

double Lorene::Eos_bf_poly::gam34m1 [protected, inherited]

$\gamma_3+\gamma_4-1$

Definition at line 767 of file eos_bifluid.h.

double Lorene::Eos_bf_poly::gam4 [protected, inherited]

Adiabatic indexes $\gamma_4$, see Eq.~eeosbfpolye}.

Definition at line 729 of file eos_bifluid.h.

double Lorene::Eos_bf_poly::gam5 [protected, inherited]

Adiabatic indexes $\gamma_5$, see Eq.~eeosbfpolye}.

Definition at line 732 of file eos_bifluid.h.

double Lorene::Eos_bf_poly::gam56m1 [protected, inherited]

$\gamma_5+\gamma_6-1$

Definition at line 768 of file eos_bifluid.h.

double Lorene::Eos_bf_poly::gam6 [protected, inherited]

Adiabatic indexes $\gamma_6$, see Eq.~eeosbfpolye}.

Definition at line 735 of file eos_bifluid.h.

double Lorene::Eos_bf_poly::kap1 [protected, inherited]

Pressure coefficient $\kappa_1$ , see Eq.

~eeosbfpolye} [unit: $\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$ and $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$.

Definition at line 742 of file eos_bifluid.h.

double Lorene::Eos_bf_poly::kap2 [protected, inherited]

Pressure coefficient $\kappa_2$ , see Eq.

~eeosbfpolye} [unit: $\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$ and $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$.

Definition at line 749 of file eos_bifluid.h.

double Lorene::Eos_bf_poly::kap3 [protected, inherited]

Pressure coefficient $\kappa_3$ , see Eq.

~eeosbfpolye} [unit: $\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$ and $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$.

Definition at line 756 of file eos_bifluid.h.

double Lorene::Eos_bifluid::m_1 [protected, inherited]

Individual particle mass $m_1$ [unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$].

Definition at line 187 of file eos_bifluid.h.

double Lorene::Eos_bifluid::m_2 [protected, inherited]

Individual particle mass $m_2$ [unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$].

Definition at line 192 of file eos_bifluid.h.

string Lorene::Eos_bifluid::name [protected, inherited]

EOS name.

Definition at line 182 of file eos_bifluid.h.

double Lorene::Eos_bf_poly::precis [protected, inherited]

contains the precision required in zerosec_b

Definition at line 800 of file eos_bifluid.h.

double Lorene::Eos_bf_poly::relax [protected, inherited]

Parameters needed for some inversions of the EOS.

In particular, it is used for type 4 EOS: contains the relaxation parameter needed in the iteration

Definition at line 798 of file eos_bifluid.h.

int Lorene::Eos_bf_poly::typeos [protected, inherited]

The bi-fluid analytical EOS type:.

0 - $\gamma_1 = \gamma_2 = 2$ and $\gamma_3 = \gamma_4 = \gamma_5 = \gamma_6 = 1$. In this case, the EOS can be inverted analytically.

1 - $\gamma_3 = \gamma_4 = \gamma_5 = \gamma_6 = 1$, but $\gamma_1 \not= 2$ or $\gamma_2 \not= 2$.

2 - $\gamma_3 = \gamma_5 = 1$, but none of the previous cases.

3 - $\gamma_4 = \gamma_6 = 1$, but none of the previous cases.

4 - None of the previous cases (the most general)

5 - special case of comparison to slow-rotation approximation: this is identical to typeos=0, but using a modified EOS-inversion method, namely we don't switch to a 1-fluid EOS in 1-fluid regions.

Definition at line 792 of file eos_bifluid.h.


The documentation for this class was generated from the following files:

Generated on 7 Dec 2019 for LORENE by  doxygen 1.6.1