LORENE
blackhole_rk_theta.C
1 /*
2  * Methods of class Black_hole to compute a forth-order Runge-Kutta
3  * integration to the theta direction for the solution of the Killing vectors
4  *
5  * (see file blackhole.h for documentation).
6  *
7  */
8 
9 /*
10  * Copyright (c) 2007 Keisuke Taniguchi
11  *
12  * This file is part of LORENE.
13  *
14  * LORENE is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2
16  * as published by the Free Software Foundation.
17  *
18  * LORENE is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with LORENE; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26  *
27  */
28 
29 
30 
31 /*
32  * $Id: blackhole_rk_theta.C,v 1.5 2016/12/05 16:17:48 j_novak Exp $
33  * $Log: blackhole_rk_theta.C,v $
34  * Revision 1.5 2016/12/05 16:17:48 j_novak
35  * Suppression of some global variables (file names, loch, ...) to prevent redefinitions
36  *
37  * Revision 1.4 2014/10/13 08:52:46 j_novak
38  * Lorene classes and functions now belong to the namespace Lorene.
39  *
40  * Revision 1.3 2014/10/06 15:13:03 j_novak
41  * Modified #include directives to use c++ syntax.
42  *
43  * Revision 1.2 2008/07/02 20:44:19 k_taniguchi
44  * Typos removed.
45  *
46  * Revision 1.1 2008/05/15 19:33:50 k_taniguchi
47  * *** empty log message ***
48  *
49  *
50  * $Header: /cvsroot/Lorene/C++/Source/Black_hole/blackhole_rk_theta.C,v 1.5 2016/12/05 16:17:48 j_novak Exp $
51  *
52  */
53 
54 // C++ headers
55 //#include <>
56 
57 // C headers
58 #include <cmath>
59 
60 // Lorene headers
61 #include "blackhole.h"
62 #include "unites.h"
63 #include "utilitaires.h"
64 
65  //---------------------------------------------------//
66  // Forth-order Runge-Kutta to the polar angle //
67  //---------------------------------------------------//
68 
69 namespace Lorene {
70 Tbl Black_hole::runge_kutta_theta_bh(const Tbl& xi_i, const double& theta_i,
71  const double& phi,
72  const int& nrk_theta) const {
73 
74  using namespace Unites ;
75 
76  const Mg3d* mg = mp.get_mg() ;
77  int nt = mg->get_nt(1) ;
78 
79  Tbl xi_f(3) ; // xi_f(0)=xi_hat{theta}, xi_f(1)=xi_hat{phi}, xi_f(2)=L
80  xi_f.set_etat_qcq() ;
81 
82  if (kerrschild) {
83 
84  cout << "Not yet prepared!!!" << endl ;
85  abort() ;
86 
87  }
88  else { // Isotropic coordinates
89 
90  // Initial data at phi on the equator
91  double xi_t0 = xi_i(0) ; // xi_hat{theta}
92  double xi_p0 = xi_i(1) ; // xi_hat{phi}
93  double xi_l0 = xi_i(2) ; // L
94  double theta0 = theta_i ;
95 
96  double dt = - 0.5 * M_PI / double(nt-1) / double(nrk_theta) ;
97  // Compute from M_PI/2 to 0
98 
99  double rah = rad_ah() ;
100 
101  Scalar dlnconfo(mp) ;
102  dlnconfo = confo.stdsdp() / confo ;
103  dlnconfo.std_spectral_base() ;
104 
105  Scalar laplnconfo(mp) ;
106  laplnconfo = confo.lapang() / confo ;
107  laplnconfo.std_spectral_base() ;
108 
109  Scalar confo2(mp) ;
110  confo2 = confo * confo ;
111  confo2.std_spectral_base() ;
112 
113  double xi_t1, xi_t2, xi_t3, xi_t4, xi_tf ;
114  double xi_p1, xi_p2, xi_p3, xi_p4, xi_pf ;
115  double xi_l1, xi_l2, xi_l3, xi_l4, xi_lf ;
116  double f1, f2, f3, f4 ;
117  double g1, g2, g3, g4 ;
118  double h1, h2, h3, h4 ;
119 
120  // Forth-order Runge-Kutta
121  // (nrk_theta times steps between two collocation points)
122  // ------------------------------------------------------
123 
124  for (int i=0; i<nrk_theta; i++) {
125 
126  // First
127  f1 = -2. * xi_p0 * dlnconfo.val_point(rah, theta0, phi) ;
128  g1 = xi_l0 * rah * confo2.val_point(rah, theta0, phi)
129  + 2. * xi_t0 * dlnconfo.val_point(rah, theta0, phi) ;
130  h1 = - (1. - 2.*laplnconfo.val_point(rah, theta0, phi)) * xi_p0
131  / rah / confo2.val_point(rah, theta0, phi) ;
132 
133  xi_t1 = dt * f1 ;
134  xi_p1 = dt * g1 ;
135  xi_l1 = dt * h1 ;
136 
137  // Second
138  f2 = -2. * (xi_p0+0.5*xi_p1)
139  * dlnconfo.val_point(rah, theta0+0.5*dt, phi) ;
140  g2 = (xi_l0+0.5*xi_l1) * rah
141  * confo2.val_point(rah, theta0+0.5*dt, phi)
142  + 2. * (xi_t0+0.5*xi_t1)
143  * dlnconfo.val_point(rah, theta0+0.5*dt, phi) ;
144  h2 = - (1. - 2.*laplnconfo.val_point(rah, theta0+0.5*dt, phi))
145  * (xi_p0+0.5*xi_p1) / rah
146  / confo2.val_point(rah, theta0+0.5*dt, phi) ;
147 
148  xi_t2 = dt * f2 ;
149  xi_p2 = dt * g2 ;
150  xi_l2 = dt * h2 ;
151 
152  // Third
153  f3 = -2. * (xi_p0+0.5*xi_p2)
154  * dlnconfo.val_point(rah, theta0+0.5*dt, phi) ;
155  g3 = (xi_l0+0.5*xi_l2) * rah
156  * confo2.val_point(rah, theta0+0.5*dt, phi)
157  + 2. * (xi_t0+0.5*xi_t2)
158  * dlnconfo.val_point(rah, theta0+0.5*dt, phi) ;
159  h3 = - (1. - 2.*laplnconfo.val_point(rah, theta0+0.5*dt, phi))
160  * (xi_p0+0.5*xi_p2) / rah
161  / confo2.val_point(rah, theta0+0.5*dt, phi) ;
162 
163  xi_t3 = dt * f3 ;
164  xi_p3 = dt * g3 ;
165  xi_l3 = dt * h3 ;
166 
167  // Forth
168  f4 = -2. * (xi_p0+xi_p3) * dlnconfo.val_point(rah, theta0+dt, phi) ;
169  g4 = (xi_l0+xi_l3) * rah * confo2.val_point(rah, theta0+dt, phi)
170  + 2. * (xi_t0+xi_t3) * dlnconfo.val_point(rah, theta0+dt, phi) ;
171  h4 = - (1. - 2.*laplnconfo.val_point(rah, theta0+dt, phi))
172  * (xi_p0+xi_p3) / rah / confo2.val_point(rah, theta0+dt, phi) ;
173 
174  xi_t4 = dt * f4 ;
175  xi_p4 = dt * g4 ;
176  xi_l4 = dt * h4 ;
177 
178  // Final results
179  // -------------
180  xi_tf = xi_t0 + (xi_t1 + 2.*xi_t2 + 2.*xi_t3 + xi_t4) / 6. ;
181  xi_pf = xi_p0 + (xi_p1 + 2.*xi_p2 + 2.*xi_p3 + xi_p4) / 6. ;
182  xi_lf = xi_l0 + (xi_l1 + 2.*xi_l2 + 2.*xi_l3 + xi_l4) / 6. ;
183 
184  // Final results are put into the initial data
185  // in order for the next step
186  // -------------------------------------------
187  xi_t0 = xi_tf ;
188  xi_p0 = xi_pf ;
189  xi_l0 = xi_lf ;
190 
191  } // End of the loop
192 
193  xi_f.set(0) = xi_tf ;
194  xi_f.set(1) = xi_pf ;
195  xi_f.set(2) = xi_lf ;
196 
197  }
198 
199  return xi_f ;
200 
201 }
202 }
Map & mp
Mapping associated with the black hole.
Definition: blackhole.h:80
const Scalar & lapang() const
Returns the angular Laplacian of *this , where .
Definition: scalar_deriv.C:461
Lorene prototypes.
Definition: app_hor.h:67
Standard units of space, time and mass.
const Mg3d * get_mg() const
Gives the Mg3d on which the mapping is defined.
Definition: map.h:783
double & set(int i)
Read/write of a particular element (index i) (1D case)
Definition: tbl.h:301
Tensor field of valence 0 (or component of a tensorial field).
Definition: scalar.h:393
bool kerrschild
true for a Kerr-Schild background, false for a conformally flat background
Definition: blackhole.h:85
virtual void std_spectral_base()
Sets the spectral bases of the Valeur va to the standard ones for a scalar field. ...
Definition: scalar.C:790
Tbl runge_kutta_theta_bh(const Tbl &xi_i, const double &theta_i, const double &phi, const int &nrk) const
Compute a forth-order Runge-Kutta integration to the theta direction for the solution of the Killing ...
void set_etat_qcq()
Sets the logical state to ETATQCQ (ordinary state).
Definition: tbl.C:364
Scalar confo
Conformal factor generated by the black hole.
Definition: blackhole.h:118
virtual double rad_ah() const
Radius of the apparent horizon.
const Scalar & stdsdp() const
Returns of *this .
Definition: scalar_deriv.C:238
double val_point(double r, double theta, double phi) const
Computes the value of the field at an arbitrary point , by means of the spectral expansion.
Definition: scalar.C:896
Multi-domain grid.
Definition: grilles.h:279
Basic array class.
Definition: tbl.h:164
int get_nt(int l) const
Returns the number of points in the co-latitude direction ( ) in domain no. l.
Definition: grilles.h:474