LORENE
Lorene::Dyn_eos_poly Class Reference

Polytropic equation of state (relativistic case) for use in dynamical code. More...

#include <dyneos.h>

Inheritance diagram for Lorene::Dyn_eos_poly:
Lorene::Dyn_eos

Public Member Functions

 Dyn_eos_poly (double gamma, double kappa)
 Standard constructor (sets both m_0 and mu_0 to 1). More...
 
 Dyn_eos_poly (double gamma, double kappa, double mass)
 Standard constructor with individual particle mass (sets mu_0 to 1). More...
 
 Dyn_eos_poly (double gamma, double kappa, double mass, double mu_zero)
 Standard constructor with individual particle mass and zero-pressure chemical potential. More...
 
 Dyn_eos_poly (const Dyn_eos_poly &)
 Copy constructor. More...
 
virtual ~Dyn_eos_poly ()
 Destructor. More...
 
void operator= (const Dyn_eos_poly &)
 Assignment to another Dyn_eos_poly. More...
 
virtual bool operator== (const Dyn_eos &) const
 Comparison operator (egality) More...
 
virtual bool operator!= (const Dyn_eos &) const
 Comparison operator (difference) More...
 
virtual int identify () const
 Returns a number to identify the sub-classe of Dyn_eos the object belongs to. More...
 
double get_gam () const
 Returns the adiabatic index $\gamma$ (cf. Eq. (3)) More...
 
double get_kap () const
 Returns the pressure coefficient $\kappa$ (cf. More...
 
double get_m_0 () const
 Return the individual particule mass $m_0$ (cf. More...
 
double get_mu_0 () const
 Return the relativistic chemical potential at zero pressure [unit: $m_B c^2$, with $m_B = 1.66\ 10^{-27} \ {\rm kg}$]. More...
 
virtual void sauve (FILE *) const
 Save in a file. More...
 
virtual double ent_nbar_p (double nbar, const Param *par=0x0) const
 Computes the log-enthalpy from the baryon density and extra parameters (virtual function implemented in the derived classes). More...
 
virtual double ener_nbar_p (double nbar, const Param *par=0x0) const
 Computes the total energy density from the baryon density and extra parameters (virtual function implemented in the derived classes). More...
 
virtual double press_nbar_p (double nbar, const Param *par=0x0) const
 Computes the pressure from the baryon density and extra parameters (virtual function implemented in the derived classes). More...
 
virtual double csound_square_nbar_p (double nbar, const Param *par=0x0) const
 Computes the sound speed squared $ c_s^2 = c^2 \frac{dp}{de}$ from the baryon density with extra parameters. More...
 
const string & get_name () const
 Returns the EOS name. More...
 
void set_name (const string &)
 Sets the EOS name. More...
 
Scalar ent_nbar (const Scalar &nbar, int nzet, int l_min=0, Param *par=0x0) const
 Computes the log-enthalpy field from the baryon density field and extra parameters. More...
 
Scalar ener_nbar (const Scalar &nbar, int nzet, int l_min=0, Param *par=0x0) const
 Computes the total energy density from the baryon density and extra parameters. More...
 
Scalar press_nbar (const Scalar &nbar, int nzet, int l_min=0, Param *par=0x0) const
 Computes the pressure from the baryon density and extra parameters. More...
 
Scalar csound_square_nbar (const Scalar &nbar, int nzet, int l_min=0, Param *par=0x0) const
 Computes the sound speed squared $ c_s^2 = c^2 \frac{dp}{de}$ from the baryon density with extra parameters. More...
 

Static Public Member Functions

static Dyn_eosconvert_from_Eos (const Eos &)
 Conversion operator from Eos to Dyn_eos. More...
 
static Dyn_eoseos_from_file (FILE *)
 Construction of an EOS from a binary file. More...
 
static Dyn_eoseos_from_file (ifstream &)
 Construction of an EOS from a formatted file. More...
 

Protected Member Functions

 Dyn_eos_poly (FILE *)
 Constructor from a binary file (created by the function sauve(FILE*) ). More...
 
 Dyn_eos_poly (ifstream &)
 Constructor from a formatted file. More...
 
void set_auxiliary ()
 Computes the auxiliary quantities gam1 , unsgam1 , gam1sgamkap from the values of gam and kap. More...
 
virtual ostream & operator>> (ostream &) const
 Operator >> More...
 
void calcule (const Scalar &thermo, int nzet, int l_min, double(Dyn_eos::*fait)(double, const Param *) const, Param *par, Scalar &resu) const
 General computational method for Scalar 's. More...
 

Protected Attributes

double gam
 Adiabatic index $\gamma$ (cf. Eq. (3)) More...
 
double kap
 Pressure coefficient $\kappa$ (cf. More...
 
double m_0
 Individual particule mass $m_0$ (cf. More...
 
double mu_0
 Relativistic chemical potential at zero pressure [unit: $m_B c^2$, with $m_B = 1.66\ 10^{-27} \ {\rm kg}$]. More...
 
double gam1
 $\gamma-1$ More...
 
double kapsgam1
 $\kappa/(\gamma-1)$ More...
 
double gamkapsgam1
 $(\gamma \kappa) / [(\gamma - 1)*m_0]$ More...
 
double rel_mu_0
 $\mu_0/m_0$ More...
 
string name
 EOS name. More...
 

Friends

Dyn_eosDyn_eos::eos_from_file (FILE *)
 The construction functions from a file. More...
 
Dyn_eosDyn_eos::eos_from_file (ifstream &)
 

Detailed Description

Polytropic equation of state (relativistic case) for use in dynamical code.

This equation of state (EOS) corresponds to identical relativistic particles of rest mass is $m_0$, whose total energy density e is related to their numerical density n by

\[ e(n) = {\kappa \over \gamma-1} n^\gamma + \mu_0 \, n \ , \qquad \qquad (1) \]

where $\mu_0$ is the chemical potential at zero pressure. The relativistic (i.e. including rest mass energy) chemical potential is then

\[ \mu(n) := {de\over dn} = {\kappa \gamma \over \gamma-1} n^{\gamma-1} + \mu_0 \ .\qquad \qquad (2) \]

The pressure is given by the (zero-temperature) First Law of Thermodynamics: $p = \mu n - e$, so that

\[ p(n) = \kappa n^\gamma \ . \qquad \qquad (3) \]

The log-enthalpy is defined as the logarithm of the ratio of the enthalpy par particle by the partical rest mass energy :

\[ H(n) := c^2 \ln \left( {e+p \over m_0 c^2\, n} \right) \ . \qquad \qquad (4) \]

According to the (zero-temperature) First Law of Thermodynamics, the log-enthalpy is related to the chemical potential by

\[ H = c^2 \ln \left( {\mu \over m_0 c^2} \right) \ . \qquad \qquad (5) \]

()

Definition at line 378 of file dyneos.h.

Constructor & Destructor Documentation

◆ Dyn_eos_poly() [1/6]

Lorene::Dyn_eos_poly::Dyn_eos_poly ( double  gamma,
double  kappa 
)

Standard constructor (sets both m_0 and mu_0 to 1).

The individual particle mass $m_0$ is set to the mean baryon mass $m_B = 1.66\ 10^{-27} \ {\rm kg}$.

Parameters
gammaadiabatic index $\gamma$ (cf. Eq. (3))
kappapressure coefficient $\kappa$
(cf. Eq. (3)) [unit: $\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$ and $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$

Definition at line 67 of file dyneos_poly.C.

References set_auxiliary().

◆ Dyn_eos_poly() [2/6]

Lorene::Dyn_eos_poly::Dyn_eos_poly ( double  gamma,
double  kappa,
double  mass 
)

Standard constructor with individual particle mass (sets mu_0 to 1).

Parameters
gammaadiabatic index $\gamma$ (cf. Eq. (3))
kappapressure coefficient $\kappa$ (cf. Eq. (3)) [unit: $\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$ and $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$
massindividual particule mass $m_0$ (cf. Eq. (1) [unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$]

Definition at line 76 of file dyneos_poly.C.

References set_auxiliary().

◆ Dyn_eos_poly() [3/6]

Lorene::Dyn_eos_poly::Dyn_eos_poly ( double  gamma,
double  kappa,
double  mass,
double  mu_zero 
)

Standard constructor with individual particle mass and zero-pressure chemical potential.

Parameters
gammaadiabatic index $\gamma$ (cf. Eq. (3))
kappapressure coefficient $\kappa$ (cf. Eq. (3)) [unit: $\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$ and $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$
massindividual particule mass $m_0$ (cf. Eq. (1)) [unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$]
mu_zeroRelativistic chemical potential at zero pressure [unit: $m_B c^2$, with $m_B = 1.66\ 10^{-27} \ {\rm kg}$]. (standard value: 1)

Definition at line 85 of file dyneos_poly.C.

References set_auxiliary().

◆ Dyn_eos_poly() [4/6]

Lorene::Dyn_eos_poly::Dyn_eos_poly ( const Dyn_eos_poly eosi)

Copy constructor.

Definition at line 94 of file dyneos_poly.C.

References set_auxiliary().

◆ Dyn_eos_poly() [5/6]

Lorene::Dyn_eos_poly::Dyn_eos_poly ( FILE *  fich)
protected

Constructor from a binary file (created by the function sauve(FILE*) ).

This constructor is protected because any EOS construction from a binary file must be done via the function Dyn_eos::eos_from_file(FILE*) .

Definition at line 104 of file dyneos_poly.C.

References Lorene::fread_be(), gam, kap, m_0, mu_0, and set_auxiliary().

◆ Dyn_eos_poly() [6/6]

Lorene::Dyn_eos_poly::Dyn_eos_poly ( ifstream &  fich)
protected

Constructor from a formatted file.

This constructor is protected because any EOS construction from a formatted file must be done via the function Dyn_eos::eos_from_file(ifstream&) .

Definition at line 125 of file dyneos_poly.C.

References gam, kap, m_0, mu_0, and set_auxiliary().

◆ ~Dyn_eos_poly()

Lorene::Dyn_eos_poly::~Dyn_eos_poly ( )
virtual

Destructor.

Definition at line 146 of file dyneos_poly.C.

Member Function Documentation

◆ calcule()

void Lorene::Dyn_eos::calcule ( const Scalar thermo,
int  nzet,
int  l_min,
double(Dyn_eos::*)(double, const Param *) const  fait,
Param par,
Scalar resu 
) const
protectedinherited

General computational method for Scalar 's.

Parameters
thermo[input] thermodynamical quantity (for instance the density field) from which the thermodynamical quantity resu is to be computed.
nzet[input] number of domains where resu is to be computed.
l_min[input] index of the innermost domain is which resu is to be computed [default value: 0]; resu is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
fait[input] pointer on the member function of class Dyn_eos which performs the pointwise calculation.
parpossible extra parameters of the EOS
resu[output] result of the computation.

Definition at line 196 of file dyneos.C.

References Lorene::Scalar::get_etat().

◆ convert_from_Eos()

Dyn_eos * Lorene::Dyn_eos::convert_from_Eos ( const Eos eos_in)
staticinherited

Conversion operator from Eos to Dyn_eos.

Works only for relativistic polytropes and tabulated EOSs.

Definition at line 120 of file dyneos.C.

References Lorene::Eos_poly::get_gam(), Lorene::Eos_poly::get_kap(), Lorene::Eos_poly::get_m_0(), Lorene::Eos_poly::get_mu_0(), Lorene::Eos::get_name(), and Lorene::Eos::identify().

◆ csound_square_nbar()

Scalar Lorene::Dyn_eos::csound_square_nbar ( const Scalar nbar,
int  nzet,
int  l_min = 0,
Param par = 0x0 
) const
inherited

Computes the sound speed squared $ c_s^2 = c^2 \frac{dp}{de}$ from the baryon density with extra parameters.

Parameters
nbar[input, unit: $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryon density
nzetnumber of domains where the derivative dln(e)/dln(H) is to be computed.
l_minindex of the innermost domain is which the coefficient dln(n)/dln(H) is to be computed [default value: 0]; the derivative dln(e)/dln(H) is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
parpossible extra parameters of the EOS
Returns
$c_s^2 $ [unit: c^2]

Definition at line 300 of file dyneos.C.

References Lorene::Dyn_eos::calcule(), Lorene::Dyn_eos::csound_square_nbar_p(), and Lorene::Tensor::get_mp().

◆ csound_square_nbar_p()

double Lorene::Dyn_eos_poly::csound_square_nbar_p ( double  nbar,
const Param par = 0x0 
) const
virtual

Computes the sound speed squared $ c_s^2 = c^2 \frac{dp}{de}$ from the baryon density with extra parameters.

Parameters
nbar[input, unit: $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryon density
parpossible extra parameters of the EOS
Returns
$c_s^2 $ [unit: c^2]

Implements Lorene::Dyn_eos.

Definition at line 318 of file dyneos_poly.C.

References gam, gam1, kap, kapsgam1, mu_0, and Lorene::pow().

◆ ener_nbar()

Scalar Lorene::Dyn_eos::ener_nbar ( const Scalar nbar,
int  nzet,
int  l_min = 0,
Param par = 0x0 
) const
inherited

Computes the total energy density from the baryon density and extra parameters.

Parameters
nbar[input, unit: $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryon density
nzetnumber of domains where the energy density is to be computed.
l_minindex of the innermost domain is which the energy density is to be computed [default value: 0]; the energy density is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
parpossible extra parameters of the EOS
Returns
energy density [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Definition at line 276 of file dyneos.C.

References Lorene::Dyn_eos::calcule(), Lorene::Dyn_eos::ener_nbar_p(), and Lorene::Tensor::get_mp().

◆ ener_nbar_p()

double Lorene::Dyn_eos_poly::ener_nbar_p ( double  nbar,
const Param par = 0x0 
) const
virtual

Computes the total energy density from the baryon density and extra parameters (virtual function implemented in the derived classes).

Parameters
nbar[input, unit: $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryon density
parpossible extra parameters of the EOS
Returns
energy density e [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Implements Lorene::Dyn_eos.

Definition at line 298 of file dyneos_poly.C.

References gam, kapsgam1, mu_0, and Lorene::pow().

◆ ent_nbar()

Scalar Lorene::Dyn_eos::ent_nbar ( const Scalar nbar,
int  nzet,
int  l_min = 0,
Param par = 0x0 
) const
inherited

Computes the log-enthalpy field from the baryon density field and extra parameters.

Parameters
nbar[input, unit: $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryon density
nzetnumber of domains where the baryon density is to be computed.
l_minindex of the innermost domain is which the baryon density is to be computed [default value: 0]; the baryon density is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
parpossible extra parameters of the EOS
Returns
ent log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass.

Definition at line 263 of file dyneos.C.

References Lorene::Dyn_eos::calcule(), Lorene::Dyn_eos::ent_nbar_p(), and Lorene::Tensor::get_mp().

◆ ent_nbar_p()

double Lorene::Dyn_eos_poly::ent_nbar_p ( double  nbar,
const Param par = 0x0 
) const
virtual

Computes the log-enthalpy from the baryon density and extra parameters (virtual function implemented in the derived classes).

Parameters
nbar[input, unit: $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryon density
parpossible extra parameters of the EOS
Returns
ent log-enthalpy H defined by $H = c^2 \ln\left( {e+p \over m_B c^2 n} \right) $, where e is the (total) energy density, p the pressure, n the baryon density, and $m_B$ the baryon mass.

Implements Lorene::Dyn_eos.

Definition at line 288 of file dyneos_poly.C.

References gam1, gamkapsgam1, Lorene::log(), Lorene::pow(), and rel_mu_0.

◆ eos_from_file() [1/2]

Dyn_eos * Lorene::Dyn_eos::eos_from_file ( FILE *  fich)
staticinherited

Construction of an EOS from a binary file.

The file must have been created by the function sauve(FILE*) .

Definition at line 323 of file dyneos.C.

References Lorene::fread_be().

◆ eos_from_file() [2/2]

Dyn_eos * Lorene::Dyn_eos::eos_from_file ( ifstream &  fich)
staticinherited

Construction of an EOS from a formatted file.

The fist line of the file must start by the EOS number, according to the following conventions (same as fo the classes Eos ):

  • 1 = relativistic polytropic EOS (class Dyn_eos_poly ).
  • 2 = Newtonian polytropic EOS (class Dyn_eos_poly_newt ).
  • 17 = Tabulated EOS (class Dyn_eos_tab ).
  • 20 = Consistent EOS from table (class Dyn_eos_cons ).

The second line in the file should contain a name given by the user to the EOS. The following lines should contain the EOS parameters (one parameter per line), in the same order than in the class declaration.

Definition at line 362 of file dyneos.C.

◆ get_gam()

double Lorene::Dyn_eos_poly::get_gam ( ) const

Returns the adiabatic index $\gamma$ (cf. Eq. (3))

Definition at line 178 of file dyneos_poly.C.

References gam.

◆ get_kap()

double Lorene::Dyn_eos_poly::get_kap ( ) const

Returns the pressure coefficient $\kappa$ (cf.

Eq. (3)) [unit: $\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$ and $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$.

Definition at line 183 of file dyneos_poly.C.

References kap.

◆ get_m_0()

double Lorene::Dyn_eos_poly::get_m_0 ( ) const

Return the individual particule mass $m_0$ (cf.

Eq. (1)) [unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$].

Definition at line 188 of file dyneos_poly.C.

References m_0.

◆ get_mu_0()

double Lorene::Dyn_eos_poly::get_mu_0 ( ) const

Return the relativistic chemical potential at zero pressure [unit: $m_B c^2$, with $m_B = 1.66\ 10^{-27} \ {\rm kg}$].

Definition at line 193 of file dyneos_poly.C.

References mu_0.

◆ get_name()

const string & Lorene::Dyn_eos::get_name ( ) const
inherited

Returns the EOS name.

Definition at line 110 of file dyneos.C.

References Lorene::Dyn_eos::name.

◆ identify()

int Lorene::Dyn_eos_poly::identify ( ) const
virtual

Returns a number to identify the sub-classe of Dyn_eos the object belongs to.

Implements Lorene::Dyn_eos.

Definition at line 313 of file dyneos.C.

◆ operator!=()

bool Lorene::Dyn_eos_poly::operator!= ( const Dyn_eos eos_i) const
virtual

Comparison operator (difference)

Implements Lorene::Dyn_eos.

Definition at line 248 of file dyneos_poly.C.

References operator==().

◆ operator=()

void Lorene::Dyn_eos_poly::operator= ( const Dyn_eos_poly eosi)

Assignment to another Dyn_eos_poly.

Definition at line 152 of file dyneos_poly.C.

References gam, kap, m_0, mu_0, Lorene::Dyn_eos::name, set_auxiliary(), and Lorene::Dyn_eos::set_name().

◆ operator==()

bool Lorene::Dyn_eos_poly::operator== ( const Dyn_eos eos_i) const
virtual

Comparison operator (egality)

Implements Lorene::Dyn_eos.

Definition at line 204 of file dyneos_poly.C.

References gam, Lorene::Dyn_eos::identify(), identify(), kap, m_0, and mu_0.

◆ operator>>()

ostream & Lorene::Dyn_eos_poly::operator>> ( ostream &  ost) const
protectedvirtual

Operator >>

Implements Lorene::Dyn_eos.

Definition at line 269 of file dyneos_poly.C.

References gam, kap, m_0, and mu_0.

◆ press_nbar()

Scalar Lorene::Dyn_eos::press_nbar ( const Scalar nbar,
int  nzet,
int  l_min = 0,
Param par = 0x0 
) const
inherited

Computes the pressure from the baryon density and extra parameters.

Parameters
nbar[input, unit: $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryon density
nzetnumber of domains where the pressure is to be computed.
l_minindex of the innermost domain is which the pressure is to be computed [default value: 0]; the pressure is computed only in domains whose indices are in [l_min,l_min+nzet-1] . In the other domains, it is set to zero.
parpossible extra parameters of the EOS
Returns
pressure [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Definition at line 288 of file dyneos.C.

References Lorene::Dyn_eos::calcule(), Lorene::Tensor::get_mp(), and Lorene::Dyn_eos::press_nbar_p().

◆ press_nbar_p()

double Lorene::Dyn_eos_poly::press_nbar_p ( double  nbar,
const Param par = 0x0 
) const
virtual

Computes the pressure from the baryon density and extra parameters (virtual function implemented in the derived classes).

Parameters
nbar[input, unit: $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$] baryon density
parpossible extra parameters of the EOS
Returns
pressure p [unit: $\rho_{\rm nuc} c^2$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$

Implements Lorene::Dyn_eos.

Definition at line 308 of file dyneos_poly.C.

References gam, kap, and Lorene::pow().

◆ sauve()

void Lorene::Dyn_eos_poly::sauve ( FILE *  fich) const
virtual

Save in a file.

Reimplemented from Lorene::Dyn_eos.

Definition at line 258 of file dyneos_poly.C.

References Lorene::fwrite_be(), gam, kap, m_0, mu_0, and Lorene::Dyn_eos::sauve().

◆ set_auxiliary()

void Lorene::Dyn_eos_poly::set_auxiliary ( )
protected

Computes the auxiliary quantities gam1 , unsgam1 , gam1sgamkap from the values of gam and kap.

Definition at line 170 of file dyneos_poly.C.

References gam, gam1, gamkapsgam1, kap, kapsgam1, m_0, mu_0, and rel_mu_0.

◆ set_name()

void Lorene::Dyn_eos::set_name ( const string &  name_i)
inherited

Sets the EOS name.

Definition at line 105 of file dyneos.C.

References Lorene::Dyn_eos::name.

Friends And Related Function Documentation

◆ Dyn_eos::eos_from_file

Dyn_eos* Dyn_eos::eos_from_file ( FILE *  )
friend

The construction functions from a file.

Member Data Documentation

◆ gam

double Lorene::Dyn_eos_poly::gam
protected

Adiabatic index $\gamma$ (cf. Eq. (3))

Definition at line 385 of file dyneos.h.

◆ gam1

double Lorene::Dyn_eos_poly::gam1
protected

$\gamma-1$

Definition at line 407 of file dyneos.h.

◆ gamkapsgam1

double Lorene::Dyn_eos_poly::gamkapsgam1
protected

$(\gamma \kappa) / [(\gamma - 1)*m_0]$

Definition at line 409 of file dyneos.h.

◆ kap

double Lorene::Dyn_eos_poly::kap
protected

Pressure coefficient $\kappa$ (cf.

Eq. (3)) [unit: $\rho_{\rm nuc} c^2 / n_{\rm nuc}^\gamma$], where $\rho_{\rm nuc} := 1.66\ 10^{17} \ {\rm kg/m}^3$ and $n_{\rm nuc} := 0.1 \ {\rm fm}^{-3}$.

Definition at line 392 of file dyneos.h.

◆ kapsgam1

double Lorene::Dyn_eos_poly::kapsgam1
protected

$\kappa/(\gamma-1)$

Definition at line 408 of file dyneos.h.

◆ m_0

double Lorene::Dyn_eos_poly::m_0
protected

Individual particule mass $m_0$ (cf.

Eq. (1)) [unit: $m_B = 1.66\ 10^{-27} \ {\rm kg}$].

Definition at line 397 of file dyneos.h.

◆ mu_0

double Lorene::Dyn_eos_poly::mu_0
protected

Relativistic chemical potential at zero pressure [unit: $m_B c^2$, with $m_B = 1.66\ 10^{-27} \ {\rm kg}$].

(standard value: 1)

Definition at line 403 of file dyneos.h.

◆ name

string Lorene::Dyn_eos::name
protectedinherited

EOS name.

Definition at line 81 of file dyneos.h.

◆ rel_mu_0

double Lorene::Dyn_eos_poly::rel_mu_0
protected

$\mu_0/m_0$

Definition at line 410 of file dyneos.h.


The documentation for this class was generated from the following files: