LORENE
ope_helmholtz_minus_pseudo_1d_solp.C
1 /*
2  * Copyright (c) 2004 Philippe Grandclement
3  *
4  * This file is part of LORENE.
5  *
6  * LORENE is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2
8  * as published by the Free Software Foundation.
9  *
10  * LORENE is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with LORENE; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  */
20 
21 
22 
23 /*
24  * $Id: ope_helmholtz_minus_pseudo_1d_solp.C,v 1.4 2016/12/05 16:18:12 j_novak Exp $
25  * $Header: /cvsroot/Lorene/C++/Source/Ope_elementary/Ope_helmholtz_minus_pseudo_1d/ope_helmholtz_minus_pseudo_1d_solp.C,v 1.4 2016/12/05 16:18:12 j_novak Exp $
26  *
27  */
28 #include <cmath>
29 #include <cstdlib>
30 
31 #include "proto.h"
32 #include "ope_elementary.h"
33 //--------------------------------------------------
34 // Version Tbl --> Tbl a 1D pour la source
35 //--------------------------------------------------
36 
37 
38 namespace Lorene {
39 Tbl _cl_helmholtz_minus_pseudo_1d_pas_prevu (const Tbl & source, int) {
40  cout << "Combinaison lineaire pas prevue..." << endl ;
41  abort() ;
42  exit(-1) ;
43  return source;
44 }
45 
46 
47 
48 
49  //-------------------
50  //-- R_CHEBU -----
51  //-------------------
52 Tbl _cl_helmholtz_minus_pseudo_1d_r_chebu_deux(const Tbl&) ;
53 
54 Tbl _cl_helmholtz_minus_pseudo_1d_r_chebu (const Tbl &source, int puis) {
55 
56  int n=source.get_dim(0) ;
57  Tbl res(n) ;
58  res.set_etat_qcq() ;
59 
60  switch(puis) {
61  case 2 :
62  res = _cl_helmholtz_minus_pseudo_1d_r_chebu_deux(source) ;
63  break ;
64 
65  default :
66  abort() ;
67  exit(-1) ;
68  }
69  return res ;
70 }
71 
72 // Cas dzpuis = 2 ;
73 Tbl _cl_helmholtz_minus_pseudo_1d_r_chebu_deux (const Tbl &source) {
74 
75  Tbl barre(source) ;
76  int n = source.get_dim(0) ;
77 
78  int dirac = 1 ;
79  for (int i=0 ; i<n-2 ; i++) {
80  barre.set(i) = ((1+dirac)*source(i)-source(i+2)) ;
81  if (i==0) dirac = 0 ;
82  }
83 
84  Tbl tilde(barre) ;
85  for (int i=0 ; i<n-4 ; i++)
86  tilde.set(i) = (barre(i)-barre(i+2)) ;
87 
88  Tbl bis(tilde) ;
89  for (int i=0 ; i<n-4 ; i++)
90  bis.set(i) = (tilde(i)+tilde(i+1)) ;
91 
92  Tbl res(bis) ;
93  for (int i=0 ; i<n-4 ; i++)
94  res.set(i) = (bis(i)-bis(i+1)) ;
95 
96  return res ;
97 }
98 
99 
100  //----------------------------
101  //- Routine a appeler ---
102  //------------------------------
103 
104 Tbl cl_helmholtz_minus_pseudo_1d (const Tbl &source, int puis, int base_r) {
105  // Routines de derivation
106  static Tbl (*cl_helmholtz_minus_pseudo_1d[MAX_BASE])(const Tbl &, int) ;
107  static int nap = 0 ;
108 
109  // Premier appel
110  if (nap==0) {
111  nap = 1 ;
112  for (int i=0 ; i<MAX_BASE ; i++) {
113  cl_helmholtz_minus_pseudo_1d[i] = _cl_helmholtz_minus_pseudo_1d_pas_prevu ;
114  }
115  // Les routines existantes
116  cl_helmholtz_minus_pseudo_1d[R_CHEBU >> TRA_R] = _cl_helmholtz_minus_pseudo_1d_r_chebu ;
117 
118  }
119 
120  Tbl res(cl_helmholtz_minus_pseudo_1d[base_r](source, puis)) ;
121  return res ;
122 }
123 
124 
125  //------------------------------------
126  // Routine pour les cas non prevus --
127  //------------------------------------
128 Tbl _solp_helmholtz_minus_pseudo_1d_pas_prevu (const Matrice &, const Matrice &,
129  double, double, const Tbl &, int) {
130  cout << " Solution homogene pas prevue ..... : "<< endl ;
131  abort() ;
132  exit(-1) ;
133  Tbl res(1) ;
134  return res;
135 }
136 
137  //-------------------
138  //-- R_CHEBU -----
139  //-------------------
140 Tbl _solp_helmholtz_minus_pseudo_1d_r_chebu_deux (const Matrice&, const Matrice&,
141  const Tbl&) ;
142 
143 Tbl _solp_helmholtz_minus_pseudo_1d_r_chebu (const Matrice &lap, const Matrice &nondege,
144  double, double,
145  const Tbl &source, int puis) {
146  int n = lap.get_dim(0) ;
147  Tbl res(n+2) ;
148  res.set_etat_qcq() ;
149 
150  switch (puis) {
151  case 2 :
152  res = _solp_helmholtz_minus_pseudo_1d_r_chebu_deux
153  (lap, nondege, source) ;
154  break ;
155  default :
156  abort() ;
157  exit(-1) ;
158  }
159 return res ;
160 }
161 
162 // Cas dzpuis = 2 ;
163 Tbl _solp_helmholtz_minus_pseudo_1d_r_chebu_deux (const Matrice &lap, const Matrice &nondege,
164  const Tbl &source) {
165 
166  int n = lap.get_dim(0)+2 ;
167  int dege = n-nondege.get_dim(0) ;
168  assert (dege == 3) ;
169 
170  Tbl source_cl (cl_helmholtz_minus_pseudo_1d(source, 2, R_CHEBU)) ;
171 
172  Tbl so(n-dege) ;
173  so.set_etat_qcq() ;
174  for (int i=0 ; i<n-dege ; i++)
175  so.set(i) = source_cl(i);
176 
177  Tbl sol (nondege.inverse(so)) ;
178 
179  Tbl res(n) ;
180  res.annule_hard() ;
181  for (int i=1 ; i<n-2 ; i++) {
182  res.set(i) += sol(i-1)*(2*i+3) ;
183  res.set(i+1) += -sol(i-1)*(4*i+4) ;
184  res.set(i+2) += sol(i-1)*(2*i+1) ;
185  }
186 
187  return res ;
188 }
189 
190 
192 
193  if (non_dege == 0x0)
194  do_non_dege() ;
195 
196  // Routines de derivation
197  static Tbl (*solp_helmholtz_minus_pseudo_1d[MAX_BASE]) (const Matrice&, const Matrice&,
198  double, double,const Tbl&, int) ;
199  static int nap = 0 ;
200 
201  // Premier appel
202  if (nap==0) {
203  nap = 1 ;
204  for (int i=0 ; i<MAX_BASE ; i++) {
205  solp_helmholtz_minus_pseudo_1d[i] = _solp_helmholtz_minus_pseudo_1d_pas_prevu ;
206  }
207  // Les routines existantes
208  solp_helmholtz_minus_pseudo_1d[R_CHEBU >> TRA_R] = _solp_helmholtz_minus_pseudo_1d_r_chebu ;
209  }
210 
211  Tbl res(solp_helmholtz_minus_pseudo_1d[base_r] (*ope_cl, *non_dege,
212  alpha, beta, so, dzpuis)) ;
213 
214  Tbl valeurs (val_solp (res, alpha, base_r)) ;
215  valeurs *= sqrt(double(2)) ;
216 
217  sp_plus = valeurs(0) ;
218  sp_minus = valeurs(1) ;
219  dsp_plus = valeurs(2) ;
220  dsp_minus = valeurs(3) ;
221 
222 
223  return res ;
224 }
225 }
double alpha
Parameter of the associated mapping.
int dzpuis
the associated dzpuis, if in the compactified domain.
Matrice * ope_cl
Pointer on the banded-matrix of the operator.
Cmp sqrt(const Cmp &)
Square root.
Definition: cmp_math.C:223
double beta
Parameter of the associated mapping.
Lorene prototypes.
Definition: app_hor.h:67
double dsp_minus
Value of the derivative of the particular solution at the inner boundary.
virtual void do_non_dege() const
Computes the non-degenerated matrix of the operator.
virtual Tbl get_solp(const Tbl &so) const
Computes the particular solution, given the source so .
double sp_minus
Value of the particular solution at the inner boundary.
int base_r
Radial basis of decomposition.
double sp_plus
Value of the particular solution at the outer boundary.
#define TRA_R
Translation en R, used for a bitwise shift (in hex)
Definition: type_parite.h:158
double dsp_plus
Value of the derivative of the particular solution at the outer boundary.
Matrix handling.
Definition: matrice.h:152
int get_dim(int i) const
Gives the i-th dimension (ie dim.dim[i])
Definition: tbl.h:423
int get_dim(int i) const
Returns the dimension of the matrix.
Definition: matrice.C:263
Basic array class.
Definition: tbl.h:164
#define R_CHEBU
base de Chebychev ordinaire (fin), dev. en 1/r
Definition: type_parite.h:180
#define MAX_BASE
Nombre max. de bases differentes.
Definition: type_parite.h:144
Matrice * non_dege
Pointer on the non-degenerated matrix of the operator.