LORENE
map_et_poisson_ylm.C
1 /*
2  * Method of the class Map_et for the (iterative) resolution of the scalar
3  * Poisson equation with a multipole falloff condition at the outer boundary
4  *
5  * (see file map.h for documentation).
6  *
7  */
8 
9 /*
10  * Copyright (c) 2004 Joshua A. Faber
11  *
12  * This file is part of LORENE.
13  *
14  * LORENE is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2
16  * as published by the Free Software Foundation.
17  *
18  * LORENE is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with LORENE; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26  *
27  */
28 
29 
30 
31 /*
32  * $Id: map_et_poisson_ylm.C,v 1.3 2016/12/05 16:17:58 j_novak Exp $
33  * $Log: map_et_poisson_ylm.C,v $
34  * Revision 1.3 2016/12/05 16:17:58 j_novak
35  * Suppression of some global variables (file names, loch, ...) to prevent redefinitions
36  *
37  * Revision 1.2 2014/10/13 08:53:05 j_novak
38  * Lorene classes and functions now belong to the namespace Lorene.
39  *
40  * Revision 1.1 2004/12/30 15:56:42 k_taniguchi
41  * *** empty log message ***
42  *
43  *
44  * $Header: /cvsroot/Lorene/C++/Source/Map/map_et_poisson_ylm.C,v 1.3 2016/12/05 16:17:58 j_novak Exp $
45  *
46  */
47 
48 // Lorene headers
49 #include "map.h"
50 #include "cmp.h"
51 #include "param.h"
52 
53 //*****************************************************************************
54 
55 namespace Lorene {
56 
57 void Map_et::poisson_ylm(const Cmp& source, Param& par, Cmp& uu, int nylm, double* intvec) const {
58 
59  assert(source.get_etat() != ETATNONDEF) ;
60  assert(source.get_mp() == this) ;
61 
62  assert(uu.get_mp() == this) ;
63 
64 
65  int nz = mg->get_nzone() ;
66 
67  //-------------------------------
68  // Computation of the prefactor a ---> Cmp apre
69  //-------------------------------
70 
71  Mtbl unjj = 1 + srdrdt*srdrdt + srstdrdp*srstdrdp ;
72 
73  Mtbl apre1(*mg) ;
74  apre1.set_etat_qcq() ;
75  for (int l=0; l<nz; l++) {
76  *(apre1.t[l]) = alpha[l]*alpha[l] ;
77  }
78 
79  apre1 = apre1 * dxdr * dxdr * unjj ;
80 
81 
82  Cmp apre(*this) ;
83  apre = apre1 ;
84 
85  Tbl amax0 = max(apre1) ; // maximum values in each domain
86 
87  // The maximum values of a in each domain are put in a Mtbl
88  Mtbl amax1(*mg) ;
89  amax1.set_etat_qcq() ;
90  for (int l=0; l<nz; l++) {
91  *(amax1.t[l]) = amax0(l) ;
92  }
93 
94  Cmp amax(*this) ;
95  amax = amax1 ;
96 
97  //-------------------
98  // Initializations
99  //-------------------
100 
101  int nitermax = par.get_int() ;
102  int& niter = par.get_int_mod() ;
103  double lambda = par.get_double() ;
104  lambda=1.0;
105  double unmlambda = 1. - lambda ;
106  double precis = par.get_double(1) ;
107 
108  cout <<"relax in map_et:"<<lambda<<" "<<unmlambda<<endl;
109 
110  Cmp& ssj = par.get_cmp_mod() ;
111 
112  Cmp ssjm1 = ssj ;
113  Cmp ssjm2 = ssjm1 ;
114 
115  Valeur& vuu = uu.va ;
116 
117  Valeur vuujm1(*mg) ;
118  if (uu.get_etat() == ETATZERO) {
119  vuujm1 = 1 ; // to take relative differences
120  vuujm1.set_base( vuu.base ) ;
121  }
122  else{
123  vuujm1 = vuu ;
124  }
125 
126  // Affine mapping for the Laplacian-tilde
127 
128  Map_af mpaff(*this) ;
129  Param par_nul ;
130 
131  cout << "Map_et::poisson : relat. diff. u^J <-> u^{J-1} : " << endl ;
132 
133 //==========================================================================
134 //==========================================================================
135 // Start of iteration
136 //==========================================================================
137 //==========================================================================
138 
139  Tbl tdiff(nz) ;
140  double diff ;
141  niter = 0 ;
142 
143  do {
144 
145  //====================================================================
146  // Computation of R(u) (the result is put in uu)
147  //====================================================================
148 
149 
150  //-----------------------
151  // First operations on uu
152  //-----------------------
153 
154  Valeur duudx = (uu.va).dsdx() ; // d/dx
155 
156  const Valeur& d2uudtdx = duudx.dsdt() ; // d^2/dxdtheta
157 
158  const Valeur& std2uudpdx = duudx.stdsdp() ; // 1/sin(theta) d^2/dxdphi
159 
160  //------------------
161  // Angular Laplacian
162  //------------------
163 
164  Valeur sxlapang = uu.va ;
165 
166  sxlapang.ylm() ;
167 
168  sxlapang = sxlapang.lapang() ;
169 
170  sxlapang = sxlapang.sx() ; // Lap_ang(uu) /x in the nucleus
171  // Lap_ang(uu) in the shells
172  // Lap_ang(uu) /(x-1) in the ZEC
173 
174  //---------------------------------------------------------------
175  // Computation of
176  // [ 2 /(dRdx) ( A - 1 ) duu/dx + 1/R (B - 1) Lap_ang(uu) ] / x
177  //
178  // with A = 1/(dRdx) R/(x+beta_l/alpha_l) unjj
179  // B = [1/(dRdx) R/(x+beta_l/alpha_l)]^2 unjj
180  //
181  // The result is put in uu (via vuu)
182  //---------------------------------------------------------------
183 
184  Valeur varduudx = duudx ;
185 
186  uu.set_etat_qcq() ;
187 
188  Base_val sauve_base = varduudx.base ;
189 
190  vuu = 2. * dxdr * ( rsxdxdr * unjj - 1.) * varduudx
191  + ( rsxdxdr*rsxdxdr * unjj - 1.) * xsr * sxlapang ;
192 
193  vuu.set_base(sauve_base) ;
194 
195  vuu = vuu.sx() ;
196 
197  //---------------------------------------
198  // Computation of R(u)
199  //
200  // The result is put in uu (via vuu)
201  //---------------------------------------
202 
203 
204  sauve_base = vuu.base ;
205 
206  vuu = xsr * vuu
207  + 2. * dxdr * ( sr2drdt * d2uudtdx
208  + sr2stdrdp * std2uudpdx ) ;
209 
210  vuu += dxdr * ( lapr_tp + dxdr * (
211  dxdr* unjj * d2rdx2
212  - 2. * ( sr2drdt * d2rdtdx + sr2stdrdp * sstd2rdpdx ) )
213  ) * duudx ;
214 
215  vuu.set_base(sauve_base) ;
216 
217  // Since the assignment is performed on vuu (uu.va), the treatment
218  // of uu.dzpuis must be performed by hand:
219 
220 
221  //====================================================================
222  // Computation of the effective source s^J of the ``affine''
223  // Poisson equation
224  //====================================================================
225 
226  ssj = lambda * ssjm1 + unmlambda * ssjm2 ;
227 
228  ssj = ( source + uu + (amax - apre) * ssj ) / amax ;
229 
230  (ssj.va).set_base((source.va).base) ;
231 
232  //====================================================================
233  // Resolution of the ``affine'' Poisson equation
234  //====================================================================
235 
236  // *****************************************************************
237 
238  mpaff.poisson_ylm(ssj, par_nul, uu, nylm, intvec) ;
239 
240  // *****************************************************************
241 
242  tdiff = diffrel(vuu, vuujm1) ;
243 
244  diff = max(tdiff) ;
245 
246 
247  cout << " iter: " << niter << " : " ;
248  for (int l=0; l<nz; l++) {
249  cout << tdiff(l) << " " ;
250  }
251  cout << endl ;
252 
253  //=================================
254  // Updates for the next iteration
255  //=================================
256 
257  ssjm2 = ssjm1 ;
258  ssjm1 = ssj ;
259  vuujm1 = vuu ;
260 
261  niter++ ;
262 
263  } // End of iteration
264  while ( (diff > precis) && (niter < nitermax) ) ;
265 
266 //==========================================================================
267 //==========================================================================
268 // End of iteration
269 //==========================================================================
270 //==========================================================================
271 
272 
273 
274 }
275 
276 
277 }
Coord d2rdx2
in the nucleus and in the non-compactified shells; \ in the compactified outer domain.
Definition: map.h:1640
Coord sr2stdrdp
in the nucleus and in the non-compactified shells; \ in the compactified outer domain.
Definition: map.h:1629
double * alpha
Array (size: mg->nzone ) of the values of in each domain.
Definition: map.h:2789
Lorene prototypes.
Definition: app_hor.h:67
Coord sr2drdt
in the nucleus and in the non-compactified shells; \ in the compactified outer domain.
Definition: map.h:1621
Tbl diffrel(const Cmp &a, const Cmp &b)
Relative difference between two Cmp (norme version).
Definition: cmp_math.C:507
Coord srstdrdp
in the nucleus and in the non-compactified shells; \ in the compactified outer domain.
Definition: map.h:1613
Coord dxdr
in the nucleus and in the non-compactified shells; \ in the compactified outer domain.
Definition: map.h:1581
int get_nzone() const
Returns the number of domains.
Definition: grilles.h:465
Tbl max(const Cmp &)
Maximum values of a Cmp in each domain.
Definition: cmp_math.C:438
Coord sstd2rdpdx
in the nucleus and in the non-compactified shells; \ in the compactified outer domain.
Definition: map.h:1669
Coord xsr
in the nucleus; \ 1/R in the non-compactified shells; \ in the compactified outer domain...
Definition: map.h:1570
Coord rsxdxdr
in the nucleus; \ in the shells; \ in the outermost compactified domain.
Definition: map.h:2865
const Mg3d * mg
Pointer on the multi-grid Mgd3 on which this is defined.
Definition: map.h:694
Coord lapr_tp
in the nucleus and in the non-compactified shells; \ in the compactified outer domain.
Definition: map.h:1652
Coord srdrdt
in the nucleus and in the non-compactified shells; \ in the compactified outer domain.
Definition: map.h:1605
Coord d2rdtdx
in the nucleus and in the non-compactified shells; \ in the compactified outer domain.
Definition: map.h:1661