LORENE
solp_helmholtz_minus.C
1 /*
2  * Copyright (c) 1999-2001 Philippe Grandclement
3  *
4  * This file is part of LORENE.
5  *
6  * LORENE is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * LORENE is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with LORENE; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  */
21 
22 
23 
24 
25 /*
26  * $Id: solp_helmholtz_minus.C,v 1.10 2016/12/05 16:18:10 j_novak Exp $
27  * $Log: solp_helmholtz_minus.C,v $
28  * Revision 1.10 2016/12/05 16:18:10 j_novak
29  * Suppression of some global variables (file names, loch, ...) to prevent redefinitions
30  *
31  * Revision 1.9 2014/10/13 08:53:31 j_novak
32  * Lorene classes and functions now belong to the namespace Lorene.
33  *
34  * Revision 1.8 2014/10/06 15:16:10 j_novak
35  * Modified #include directives to use c++ syntax.
36  *
37  * Revision 1.7 2008/07/10 11:20:33 p_grandclement
38  * mistake fixed in solh_helmholtz_minus
39  *
40  * Revision 1.6 2008/07/09 06:51:58 p_grandclement
41  * some corrections to helmholtz minus in the nucleus
42  *
43  * Revision 1.5 2008/07/08 11:45:28 p_grandclement
44  * Add helmholtz_minus in the nucleus
45  *
46  * Revision 1.4 2008/02/18 13:53:45 j_novak
47  * Removal of special indentation instructions.
48  *
49  * Revision 1.3 2004/08/24 09:14:44 p_grandclement
50  * Addition of some new operators, like Poisson in 2d... It now requieres the
51  * GSL library to work.
52  *
53  * Also, the way a variable change is stored by a Param_elliptic is changed and
54  * no longer uses Change_var but rather 2 Scalars. The codes using that feature
55  * will requiere some modification. (It should concern only the ones about monopoles)
56  *
57  * Revision 1.2 2004/01/15 09:15:37 p_grandclement
58  * Modification and addition of the Helmholtz operators
59  *
60  * Revision 1.1 2003/12/11 14:48:49 p_grandclement
61  * Addition of ALL (and that is a lot !) the files needed for the general elliptic solver ... UNDER DEVELOPEMENT...
62  *
63  *
64  * $Header: /cvsroot/Lorene/C++/Source/Non_class_members/PDE/solp_helmholtz_minus.C,v 1.10 2016/12/05 16:18:10 j_novak Exp $
65  *
66  */
67 
68 //fichiers includes
69 #include <cstdio>
70 #include <cstdlib>
71 #include <cmath>
72 
73 #include "matrice.h"
74 #include "type_parite.h"
75 #include "proto.h"
76 
77  //------------------------------------
78  // Routine pour les cas non prevus --
79  //------------------------------------
80 namespace Lorene {
81 Tbl _solp_helmholtz_minus_pas_prevu (const Matrice &, const Matrice &,
82  const Tbl &, double, double, int) {
83  cout << " Solution homogene pas prevue ..... : "<< endl ;
84  abort() ;
85  exit(-1) ;
86  Tbl res(1) ;
87  return res;
88 }
89 
90 
91 
92  //-------------------
93  //-- R_CHEBU ------
94  //-------------------
95 
96 
97 Tbl _solp_helmholtz_minus_r_chebu (const Matrice &lap, const Matrice &nondege,
98  const Tbl &source, double, double, int) {
99 
100  int n = lap.get_dim(0)+2 ;
101  int dege = n-nondege.get_dim(0) ;
102  assert (dege==3) ;
103 
104  Tbl source_cl (cl_helmholtz_minus(source, R_CHEBU)) ;
105 
106  Tbl so(n-dege) ;
107  so.set_etat_qcq() ;
108  for (int i=0 ; i<n-dege ; i++)
109  so.set(i) = source_cl(i);
110 
111  Tbl sol (nondege.inverse(so)) ;
112 
113  Tbl res(n) ;
114  res.annule_hard() ;
115  for (int i=1 ; i<n-2 ; i++) {
116  res.set(i) += sol(i-1)*(2*i+3) ;
117  res.set(i+1) += -sol(i-1)*(4*i+4) ;
118  res.set(i+2) += sol(i-1)*(2*i+1) ;
119  }
120 
121  return res ;
122 }
123 
124 
125  //-------------------
126  //-- R_CHEB -----
127  //-------------------
128 Tbl _solp_helmholtz_minus_r_cheb (const Matrice &lap, const Matrice &nondege,
129  const Tbl &source, double alpha, double beta, int) {
130 
131  int n = lap.get_dim(0) ;
132  int dege = n-nondege.get_dim(0) ;
133  assert (dege ==2) ;
134 
135  Tbl source_aux(source*alpha*alpha) ;
136  Tbl xso(source_aux) ;
137  Tbl xxso(source_aux) ;
138  multx_1d(n, &xso.t, R_CHEB) ;
139  multx_1d(n, &xxso.t, R_CHEB) ;
140  multx_1d(n, &xxso.t, R_CHEB) ;
141  source_aux = beta*beta/alpha/alpha*source_aux+2*beta/alpha*xso+xxso ;
142 
143  source_aux = cl_helmholtz_minus (source_aux, R_CHEB) ;
144 
145  Tbl so(n-dege) ;
146  so.set_etat_qcq() ;
147  for (int i=0 ; i<n-dege ; i++)
148  so.set(i) = source_aux(i) ;
149 
150  Tbl auxi(nondege.inverse(so)) ;
151 
152  Tbl res(n) ;
153  res.set_etat_qcq() ;
154  for (int i=dege ; i<n ; i++)
155  res.set(i) = auxi(i-dege) ;
156 
157  for (int i=0 ; i<dege ; i++)
158  res.set(i) = 0 ;
159  return res ;
160 }
161 
162 
163  //-------------------
164  //-- R_CHEBP -----
165  //-------------------
166 Tbl _solp_helmholtz_minus_r_chebp (const Matrice &, const Matrice &nondege,
167  const Tbl &source, double alpha, double, int lq) {
168 
169 
170  int dege = (lq==0) ? 1 : 2 ;
171  int n = nondege.get_dim(0) + dege ;
172  Tbl source_cl (cl_helmholtz_minus(source*alpha*alpha, R_CHEBP)) ;
173 
174  Tbl so(n-dege) ;
175  so.set_etat_qcq() ;
176  for (int i=0 ; i<n-dege ; i++)
177  so.set(i) = source_cl(i);
178 
179  Tbl sol (nondege.inverse(so)) ;
180 
181  Tbl res(n) ;
182  res.annule_hard() ;
183  if (dege==2) {
184  for (int i=1 ; i<n-1 ; i++) {
185  res.set(i) += sol(i-1) ;
186  res.set(i+1) += sol(i-1) ;
187  }
188 }
189  else {
190  for (int i=1 ; i<n ; i++)
191  res.set(i) = sol(i-1) ;
192  }
193 return res ;
194 }
195 
196  //-------------------
197  //-- R_CHEBI -----
198  //-------------------
199 Tbl _solp_helmholtz_minus_r_chebi (const Matrice &, const Matrice &nondege,
200  const Tbl &source, double alpha, double, int lq) {
201 
202  int dege = (lq==1) ? 1 : 2 ;
203  int n = nondege.get_dim(0) + dege ;
204  Tbl source_cl (cl_helmholtz_minus(source*alpha*alpha, R_CHEBI)) ;
205 
206  Tbl so(n-dege) ;
207  so.set_etat_qcq() ;
208  for (int i=0 ; i<n-dege ; i++)
209  so.set(i) = source_cl(i);
210 
211  Tbl sol (nondege.inverse(so)) ;
212 
213  Tbl res(n) ;
214  res.annule_hard() ;
215  if (dege==2) {
216  for (int i=1 ; i<n-1 ; i++) {
217  res.set(i) += (2*i+3)*sol(i-1) ;
218  res.set(i+1) += (2*i+1)*sol(i-1) ;
219  }
220 }
221  else {
222  for (int i=1 ; i<n ; i++)
223  res.set(i) = sol(i-1) ;
224  }
225 
226 return res ;
227 
228 }
229 
230  //-------------------
231  //-- Fonction ----
232  //-------------------
233 
234 
235 Tbl solp_helmholtz_minus (const Matrice &lap, const Matrice &nondege,
236  const Tbl &source, double alpha, double beta, int lq,
237  int base_r) {
238 
239  // Routines de derivation
240  static Tbl (*solp_helmholtz_minus[MAX_BASE]) (const Matrice&, const Matrice&,
241  const Tbl&, double, double, int) ;
242  static int nap = 0 ;
243 
244  // Premier appel
245  if (nap==0) {
246  nap = 1 ;
247  for (int i=0 ; i<MAX_BASE ; i++) {
248  solp_helmholtz_minus[i] = _solp_helmholtz_minus_pas_prevu ;
249  }
250  // Les routines existantes
251  solp_helmholtz_minus[R_CHEB >> TRA_R] = _solp_helmholtz_minus_r_cheb ;
252  solp_helmholtz_minus[R_CHEBU >> TRA_R] = _solp_helmholtz_minus_r_chebu ;
253  solp_helmholtz_minus[R_CHEBP >> TRA_R] = _solp_helmholtz_minus_r_chebp ;
254  solp_helmholtz_minus[R_CHEBI >> TRA_R] = _solp_helmholtz_minus_r_chebi ;
255  }
256 
257  Tbl res(solp_helmholtz_minus[base_r] (lap, nondege, source, alpha, beta, lq)) ;
258  return res ;
259 }
260 }
Lorene prototypes.
Definition: app_hor.h:67
#define TRA_R
Translation en R, used for a bitwise shift (in hex)
Definition: type_parite.h:158
#define R_CHEBI
base de Cheb. impaire (rare) seulement
Definition: type_parite.h:170
#define R_CHEBP
base de Cheb. paire (rare) seulement
Definition: type_parite.h:168
int get_dim(int i) const
Gives the i-th dimension (ie dim.dim[i])
Definition: tbl.h:423
#define R_CHEBU
base de Chebychev ordinaire (fin), dev. en 1/r
Definition: type_parite.h:180
#define MAX_BASE
Nombre max. de bases differentes.
Definition: type_parite.h:144
#define R_CHEB
base de Chebychev ordinaire (fin)
Definition: type_parite.h:166